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Abstract-The nature of fabric accumulation in high strain zones such as ductile shear zones depends on the nature 
and orientation of flow eigenvectors or apophyses. Some flow apophyses can act as ‘attractors’ of material lines or 
principal finite strain axes. This paper explains the nature of such attractors and discusses their significance and 
orientation in different monoclinic flow types. In ductile shear zones, strain values are high enough to show the 
effect of attractors in deformed rocks clearly. The concept of attractors can be used in deformation modelling, and 
can help in understanding the accumulation of deformation fabrics in homogeneous and inhomogeneous flow, e.g. 
around boudins, mantled porphyroclasts and sheath folds. 0 1996 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

The influence of flow geometry on the form of fabrics 
in deformed rocks has been a subject of interest in 
the earth sciences for a number of years. The 
geometry of flow is easily described by the nature and 
orientation of eigenvectors of the flow tensor and a 
classification of flow by the nature of its eigenvectors 
can help to understand the development of fabrics in 
rocks. 

The exact relation between flow parameters such as 
vorticity, volume change rate or dilation rate and 
deformation geometry can be very complicated at low 
finite strain or if flow parameters changed significantly in 
the course of the deformation history. If changes were 
small and finite strain is high, however, the geometry of 
deformation fabrics may reflect the bulk geometry of 
flow. Such circumstances are found in many ductile shear 
zones. 

In studies of fabric development in ductile shear zones, 
simple shear flow is a commonly used model, and 
development of fabrics by this flow type is relatively well 
understood. Since simple shear is an oversimplification in 
many cases, it is interesting to investigate the conse- 
quences of other non-coaxial three-dimensional flow 
types for the accumulation of fabrics in shear zones. In 
order to do this, a general facilitating concept is 
introduced in the form of ‘attractors’. The attractor 
concept is a generalisation of the idea of ‘blocked 
positions’ or ‘sinks’ of rigid objects and material lines 
and planes mentioned in older work such as Passchier 
(1987), Fossen (1993) and Fossen et al. (1994). This paper 
discusses several types of attractors such as attractors of 
material lines, of finite strain axes and of fabric elements 
such as crystallographic axes. In order to explain the 
attractor concept, some aspects of three-dimensional 
flow and progressive deformation must be outlined in 
detail. 

FLOW TYPES 

Flow, a description of the velocity of particles, is 
homogeneous if its properties are the same throughout a 
deforming volume of material. Here, mainly homoge- 
neous flow is treated because its mathematical descrip- 
tion is simple and straightforward and forms a basis for 
discussion of the myriad of possible types and sequences 
of heterogeneous flow and progressive deformation. 
Heterogeneous flow can usually be modelled by subdivi- 
sion of the deforming continuum into domains of 
homogeneous flow. 

In the case of homogeneous flow, material lines rotate 
and stretch but remain straight. It is therefore possible to 
describe homogeneous flow in terms of the stretching rate 
and the rate and direction of rotation of the set of all 
material lines in a deforming body (Passchier, 1990, 
199 1). In any type of homogeneous flow, three directions 
exist in which maximum, intermediate and minimum 
stretching rate of material lines are realised (Fig. 1). 
These spatial axes are orthogonal in any flow type and are 
known as the instantaneous stretching axes (ISA) a, b and 
c (Fig. 1; Passchier, 1990, 1991) with principal instanta- 
neous stretching rates a, b and c (Fig. 1). a, b and c can 
have any magnitude but in this paper, b > c by definition 
in order to avoid treatment of flow types that are each 
other’s mirror image. Flow types can be separated into 
two major groups: coaxial, in which material lines 
parallel to ISA do not rotate with respect to these axes; 
and non-coaxial, in which they do. Any non-coaxial flow 
type can be derived from a coaxial flow type by addition 
of a rigid-body rotation component to all material lines, 
keeping ISA irrotational in an external reference frame 
(Means et al., 1980; Lister and Williams, 1983; Passchier, 
1990, 1991). This rigid-body rotation component with 
respect to ISA is known as the vorticity of the flow. The 
orientation and magnitude of the vorticity can be defined 
by a single vector w (Fig. 1). 
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Fig. 1. Schematic illustration of homogeneous monoclinic flow as 
defined in this paper. Instantaneous stretching axes (ISA) a, band c are 
shown as bold black lines. The vorticity vector w is parallel to a. The b-c 
plane is shown highlighted at right; the sense of rotation and stretching 
of some material lines (thin lines) with respect to ISA (bold black lines) is 
indicated. Bold grey lines e and d are flow apophyses. All material lines 
rotate with respect to ISA except lines parallel to the apophyses; these 

may stretch but do not rotate. 

Material lines that do not rotate with respect to ISA 
are not exclusively found in coaxial flow types; they may 
also occur in non-coaxial flows, but are not all parallel to 
ISA in that case. In any flow type, the spatial axes parallel 
to such irrotational material lines are known as flow 

eigenvectors. Since the term eigenvectors can also be used 
for irrotational lines in certain components of the flow or 
for deformation, the term flow upophyses is used here 
specifically for eigenvectors of flow in a reference frame 
where ISA are not rotating (Fig. 1; Ramberg, 1975; 
Passchier, 1988). Flow apophyses need not be orthogonal 
and are usually inclined to ISA (Fig. 1). 

Strictly speaking, the geometry of all types of homo- 
geneous flow with ISA fixed in an external reference 
frame can be fully described by six numbers, e.g. the 
principal stretching rates and the components of the 
vorticity vector. However, if we wish to describe flow in a 
geological or experimental context, the orientation of 
ISA with respect to some external reference frame, e.g. 
the Earth’s surface or the symmetry axes of an experi- 
mental rig, should be given. For this purpose, three more 
numbers are needed in a general case. In all, nine 
numbers are therefore required in the most general case 
to describe flow in a volume of material in three 
dimensions: this is the number of coefficients in a 3 x 3 
velocity gradient matrix commonly used to describe flow 
(Malvern, 1969). 

General flows are difficult to handle because of the nine 
numbers that are required for a full description: it is 
obviously difficult to show the effect of nine independent 
variables on development of structures in graphs. In the 
following sections a reduced, special type of flow is 
treated which can be defined by just four numbers. This 
is attained by ignoring the three numbers reserved for 
description of flow in an external reference frame, and by 
fixing the orientation of the vorticity vector w parallel to 
a, one of the ISA (Fig. 1). Flow of this type has a 
monoclinic or (in special cases) higher symmetry; in this 
paper it is referred to as monoclinicflow. 

Obviously, the use of a flow type with just four 
independent parameters is inspired by mathematical 
simplicity, but there is also a practical reason to restrict 
treatment to monoclinic flows. In a shear zone with 

planar wall rocks in an originally isotropic material, the 
orientation of the stress field in the zone will not only 
determine the orientation of ISA, but also that of the 
vorticity vector (Weijermars, 1991). The vorticity vector 
will lie approximately orthogonal to the instantaneous 
stretching axis with the smallest (usually negative) 
stretching rate (c in Fig. l), and in the plane of the shear 
zone. As a result, the vorticity vector in planar ductile 
shear zones can be expected to lie close to parallelism 
with a in the plane of the shear zone. The fact that most 
shear sense indicators in ductile shear zones have a 
monoclinic or higher shape symmetry with the symmetry 
axis normal to the displacement direction and in the 
plane of the shear zone seems to support this line of 
reasoning (Passchier and Trouw, 1995; Hanmer and 
Passchier, 1991). Robin and Cruden (1994) modelled 
shear zones with a complex, inhomogeneous flow pattern 
and found local triclinic flow symmetry in their model, 
but even in their example deviation from monoclinic flow 
is small. 

The four parameters that fully describe monoclinic 
flow are a, b, c and w where w is the length of the vorticity 
vector (Fig. I). The geometry of flow defined by these 
parameters is dependent on their relative, but not their 
absolute, magnitudes: for example, the geometry of flow 
in a magma and in solid rocks may be identical, but a, 6, c 

and w in each flow may differ by several orders of 
magnitude. It is therefore useful to define normalised 
rather than absolute parameters. 

Normalisation of flow parameters can be realised by 
defining some mean stretching rate S, and dividing flow 
parameters by this number. There is a large number of 
possible combinations, but for reasons outlined below a 
mean stretching rate was chosen that only depends on 
parameters a and c in the plane normal to the vorticity 

vector: 

b-c 
s=-. 

2 
(1) 

Three normalised numbers can now be defined: 

wn=E=& (the s~ti.i~a~ki;ib;c (2) 

A = b + c b + c (the sectional kinematic 
” -=- 

2i b-c dilatancy number), 
(3) 

Tn,F,L 
2S b-c’ 

(4) 

These three normalised parameters are dimensionless 
and fully describe the geometry of flow. The mean 
stretching rate S only defines the rate at which flow 
occurs; it carries no information on the geometry of 
homogeneous flow and does not influence the geometry 
of homogeneous deformation. Effectively, three numbers 
are therefore sufficient to completely define monoclinic 
flow types; this is useful, since it means that three- 
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dimensional graphs or their projections can be used to 
illustrate flow geometries. 

Two of the numbers defined above have been used in 
other papers: W,, (Passchier, 1988, 1990, 1991; Robin and 
Cruden, 1994) and A, (Passchier, 1990,199l). W,, defines 
the degree of rotationality of the flow type and is defined 
to be positive for a sinistral shear sense and negative for a 
dextral shear sense in the orientation of Fig. 1, in 
accordance with the orientation of the vorticity vector. 
A, defines the relative area-change rate in the &c plane. 
T,, defines the rate of stretch along a. Figure 2 shows some 
deformed cubes that illustrate the meaning of W,,, A, and 
T,, for flow and progressive deformation. 

W, as used in this paper, in Passchier (1988, 1990, 
1991) and Robin and Cruden (1994), is a sectional 
kinematic vorticity number and differs from the kine- 
matic vorticity number WK defined by Truesdell (1954) 
and Means et al. (1980): 

wK= 
W 

J2(a2 + b2 + c2) ’ 

Wx is related to W,, as used in this paper by: 

(5) 

w,, = w& + /i; + 1. (6) 

If T, and A, are zero (plane strain flow without area 
change), both kinematic vorticity numbers are equal. 
Another useful number derived from A, and T, is: 

v, = a+b+c a+b+c 

2s = b-c 
= T, + A,. (7) 

V, describes the relative rate of volume change of a 
flow type: for isochoric flows (no instantaneous volume 
change) it is zero. 

FLOW IN TWO AND THREE DIMENSIONS 

It is generally difficult to present the three-dimensional 
geometry of the vector field of flow in diagrams. In 
homogeneous flow, however, straight lines remain 
straight and all material lines that constitute a plane will 
therefore remain part of that plane, even though the 
plane itself may be rotating. It is therefore possible to use 
two-dimensional cross-sections through three-dimen- 
sional flow to illustrate its geometry. 

As outlined by Passchier (1991) all two-dimensional 
flow types can be presented as a simple function of W, 
and A, for the plane of observation, where the former 
refers to a vorticity vector component normal to that 
plane. In three-dimensional monoclinic flow, one apo- 
physis is parallel to a and to the vorticity vector w, and up 
to two apophyses, d and e, lie in the tic plane, 
symmetrically arranged with respect to b and c (Fig. 1). 
The b-c plane is therefore particularly useful as a section 
to show flow geometry, as outlined below. 

Figure 3 illustrates how flow types in the tic plane 
differ as a function of W,, and A,. The flow types are 
represented by sets of curves that are parallel to velocity 
vectors in the flow field (streamlines). The streamlines 
also coincide with paths that particles follow in progres- 

W,= -1; A,=O; T,=O; V,=O 

effect 0 of 

Kl 

W,= -1; A,>O; Tn=O; V,>O 

W,= - 1; A,=O; T,>O; V,>O 

W,= 0; A,=O; T,=O; V,=O 

W,= -1; A,<O; T,=O; V,cO 

w,= -1; A,=O; T,<O; VncO 

Fig. 2. Cartoon showing the deformation shape of cubes, formed by progressive deformation by invariable flow types with 
parameters as listed. Although this figure shows finite deformation and not flow, it serves to illustrate the physical significance 

of the numbers W,, A,, T, and V, and their individual effects on flow and deformation geometry. 
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4-l 
Fig. 3. W,-A, plane showing a selection of two-dimensional flow types represented by streamlines. Solid grey and black lines 
represent flow apophyses d and e, respectively. Arrows indicate displacement direction of particles in the flow. The orientation 

of instantaneous stretching axes (ISA) for all flow types is shown in a box. 

sive steady-state deformation, with ISA fixed in an 
external reference frame and no change in flow para- 
meters. The best known flow types are those for A, = 0, 
such as pure shear (IV,, = 0), simple shear (IV, = 1 or - 1) 
(Fig. 2), general flow or sub-simple shear (DePaor, 1983) 
(0 < IV, < 1 or - 1 < W,, < 0) and rotational flow or super- 
simple shear (DePaor, 1983) (W,, > 1 or W, > - 1); in 
three dimensions, these flow types are usually defined for 
plane strain (T, = 0). Notice that all possible two- 
dimensional homogeneous flow types can be presented 

in the diagram of Fig. 3, even those in sections other than 
the b-c plane; in other planes, however, other sectional 
kinematic numbers would have to be used for a numeric 
description. 

The following observations can be made from Fig. 3: 

(1) Many flow patterns contain one or two straight 
streamlines through the centre of the diagram. Such 
straight lines imply that material lines in these orienta- 
tions do not rotate with respect to the ISA; they coincide 
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with apophyses d and e in the &c plane (Fig. 1; Ramberg, 
1975; Passchier, 1988; Simpson and DePaor, 1993). 

(2) The angle c1 between d and e depends only on W,, 
according to: 

a! = cos-’ w, (8) 

(Bobyarchick, 1986; Passchier, 1986). 
As a result, d and e can be separate (- 1 c W,, < I), 

joined to a single axis (W, = 1 or W, = - 1) or absent 
( W,, > 1 or W, c - 1). The A,- W,, diagram (Fig. 3) can be 
subdivided vertically according to the number of apo- 
physes; notice that no such simple geometrical subdivi- 
sion is possible horizontally as a function of A,. 

(3) For all how types where 

A; + w,’ = 1, (9) 

the flow pattern consists exclusively of straight stream- 
lines parallel to d ore (Fig. 4a). This includes simple shear 

-- 
0 i--E z- III III -- - + I ITI ml - 

-l.oj*n 

(b) 

closed 

Fig. 4. (a) Two-dimensional flow types for An2 + Wn2 = 1 which lie on a 
circle in the FV-A, plane. These flow types all have one apophysis along 
which stretching rate is zero, and straight streamlines. (b) General 
subdivision of two-dimensional flow types according to the shape of 

their streamline-patterns. Explanation in text. 

(A, = 0 and W, = 1 or - 1) as a special case. Simple shear 
is only one of many flow types with straight and parallel 
streamlines in the b-c plane (Figs 3 & 4a); other examples 
are transgression (Tikoff and Teyssier, 1994) and 
transtension. 

(4) The circle defined by equation (9) allows a 
subdivision of flow types into major groups, based on 
the geometry of the streamlines (Passchier, 1991). Inside 
the circle, flow types are ‘hyperbolic’ in shape (Fig. 4b); 
the streamlines converge on the apophyses as asymptotes 
but do not reach the centre of the diagram (Ramberg, 
1975). On the circle, ‘parallel’ flow types occur and 
outside the circle, streamlines are ‘radiant’ and radiate 
towards or away from the centre (Figs 3 & 4b); ‘inward 
radiant’ and ‘outward radiant’ directed flow types are 
separated by ‘closed’ flow types, consisting of elliptical or 
circular streamlines (Figs 3 & 4b). 

(5) If d and e are separate apophyses and b > c, the 
stretching rate e of material lines parallel to e exceeds the 
stretching rate d of lines parallel to d (e > d). For non- 
dilatant flows (A, =0) e= -d for Wn2+An2 > 1 and 
A, > 0, d and e are positive; for Wn2+A,2 > I and 
A, < 0, d and e are negative; 

(6) At very high A, and W,.,, some special flow types 
occur, and these have been drawn along the edge of the 
diagram in Fig. 3. These include rigid body rotation 
(‘closed’ circular streamlines, W, = 0~)) and pure dilation 
(straight ‘radiant’ streamlines; A, = 00) or ‘anti-dilation’ 
(A, = - co). In the case of pure dilation or anti-dilation, 
an infinite number of apophyses occur in the &c plane; 
examples are uniaxial constriction, or flattening flow 
along a, and isotropic volume change. 

(7) The kinematic vorticity number WK of Truesdell 
(1954) changes if A, or r,, are varied, while W,, remains 
constant. Since the geometry of flow in the b-c plane as 
shown in Fig. 3 depends only on W,,, this seems a more 
suitable kinematic vorticity number to describe mono- 
clinic flows than WK. 

Because of the large variety of flow types, it is not 
possible in a single paper to give an outline of the endless 
variety of different possible deformation paths involving 
a sequence of different flow types with time. In order to 
show the effects of flow parameters in progressive 
deformation, I have therefore chosen to show just some 
end members of progressive deformation histories, and 
only those with non-changing flow parameters. 

MATERIAL LINE ATTRACTORS 

If a homogeneous flow is defined with ISA that are not 
rotating in the external reference frame, material lines in 
all orientations will be rotating at a specific angular 
velocity, except for lines parallel to the flow apophyses. 
As a consequence, many material lines rotate towards or 
away from the apophyses (Fig. 5). Three types of 
apophyses can be distinguished, depending on the move- 
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Fig. 5. (a-c) Stereograms representing the rotation of material lines between attractors, transits and repulsors in three 
monoclinic flow types. (a) Plane strain flow, the apophysis e acts as a ML-attractor. (b) Stretching rate along a equals that 
along e; an ML-attractor plane exists though a and e. (c) Stretching rate along a exceeds that along e; a acts as an ML-attractor. 
(d) Schematic illustration of the concept of ML-attractor, -transit and -repulsor seen at right angles to the apophysis, with 
relative movement of material lines (arrows). (e) Presentation of three equilibrium states that may serve as analogues for 

apophysis-types in (d). 

ment pattern of material lines at a small angle to these 
axes: repulsor-, attractor-and transit-apophyses of mate- 
rial lines (abbreviated as ‘repulsor’, ‘attractor’ and 
‘transit’ in this paper, Fig. 5). All material lines near a 
repulsor rotate away from it in all directions; those near 
an attractor rotate towards it from all directions; and 
lines near a transit may rotate towards or away from it 
depending on their orientation. Transits are in fact as 
much repulsors as attractors (Fig. 5d; Passchier and 
Trouw, 1995). The principle of attractor-, transit- and 
repulsor-apophysis classes may be easier to understand if 
one considers an analogy with the concept of stable-, 
semi-stable- and unstable-equilibrium in physics, usually 
illustrated by the behaviour of a sphere on a curved 
surface (Fig. 5e). 

Attractors and transits influence rotation of material 
lines in different ways. Material lines rotating towards a 

transit become subparallel to this apophysis, and their 
further movement is then effectively blocked. However, a 
small deviation in the flow may cause such blocked lines 
to rotate into the domain of repulsed lines, after which 
the line can rotate away from the apophysis (Fig. 5d). In 
the case of attractors, such small deviations in flow can 
change the rotational behaviour of material lines at a 
small angle to the apophysis, but cannot ‘push’ them 
away permanently. For practical purposes, however, 
transits can usually be regarded as a special type of 
attractor, transitional to repulsors. If deformation is 
accumulating for some time by the same flow type, 
material lines will rotate permanently towards an 
attractor-apophysis and such spatial axes are therefore 
referred to as material line (ML) attractors (Fig. 5). 

Prolate objects such as elongate phenocrysts in a 
magma, or tourmaline and sillimanite grains in a more 
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fine-grained flowing matrix may show similar behaviour 
as material lines; after a certain strain has accumulated, 
such objects will show a preferred orientation that 
concentrates near the ML-attractor (Passchier, 1987; 
Fossen et al., 1994). For oblong objects such as micas or 
rectangular phenocrysts in a magma, the rotational 
behaviour is more complex but even these rotate towards 
parallelism with the ML-attractor (Passchier, 1987). It 
should be stressed, however, that rigid objects in a ductile 
matrix will only rotate towards ML-attractors if their 
axial ratio is high; in other cases, such objects have their 
own attractors whose orientation also depends on the 
axial ratio of the object (Passchier, 1987). 

In most flow types, attractors and repulsors are lines in 
space but in some cases, if two of the three flow eigenvalues 
are equal, attractor-or repulsor planes through two of the 
apophysis positions may exist (Fig. 5b; Passchier, 1987). 
In such planes each line acts as an attractor or repulsor. In 
the case of a repulsor plane there is one attractor oblique to 
the plane; in the case of an attractor plane there is one 
oblique repulsor (Fig. 5b). In the case of simple shear, a 
plane of non-rotating lines connects a and the joined 
apophyses d and e. This plane is also known as the ‘flow 
plane’ of simple shear. The joined apophyses d and e act as 
an ML-transit and all material lines except those in the 
irrotational plane rotate towards or away from this dje- 
transit (Passchier, 1987). This transit effectively blocks 
rotation of material lines in simple shear flow. 

Obviously, flow is not likely to remain constant in 
character with time in any geologically realistic situation. 
However, if the flow type or orientation of ISA change 
gradually, the orientation of the ML-attractor will also 
change proportionally, and attracted material lines or 
elongate fabric elements will tend to follow the attractor. 
Therefore, any preferred orientation of elongate objects 
will track the orientation of the ML-attractor. Obviously, 
the accuracy by which this position is tracked increases 
with finite strain. 

The concept of attractors and repulsors is not 
restricted to flows with monoclinic or higher symmetry. 
The apophyses of triclinic flow can also act as attractors. 
In monoclinic flows, attractors lie along a or in the tic 
plane, but in triclinic flows attractors may have other 
orientations. Because of the large number of possible 
geometries, a full analytical approach to attractors in 
triclinic flows has not been attempted in this study. 

Orientation of ML-attractors in monoclinicjlow 

In monoclinic flow, the position of ML-attractors 
depends on flow parameters. Material lines tend to 
rotate towards the apophysis along which the highest 
stretching rate occurs. In plane strain, stretching rate a 
along a is zero and the apophysis in the b-c plane with 
maximum stretching rate, e, act as the ML-attractor. This 
effect is shown in the stereogram in Fig. 5(a). If a is not 
zero, three situations are possible: 

(1) If a < e then e is the ML-attractor. a may even be 
negative, in which case e will be an even more effective 
ML-attractor (Sanderson and Marchini, 1984; Fossen 
and Tikoff, 1993; Fossen et al., 1994). 

(2) If a=e then an ML-attractor plane as discussed 
above exists through a and e (Fig. 5b). Material lines 
rotate towards this plane, but lines within the plane do 
not rotate. a = e = d= 0 is the special case of simple shear 
mentioned above. 

The attractor plane through a and e is not unique; if 
b = c, the b-c plane acts as an attractor (a < b) or repulsor 
(a > b) plane and if a = d, the a-d plane is a repulsor plane. 

(3) If a 1 e then a is the ML-attractor (Sanderson and 
Marchini, 1984; Fossen and Tikoff, 1993; Fig. 5~). 

There are thus two possible orthogonal orientations of 
the ML-attractor in monoclinic flow, but no intermediate 
orientations except when an ML-attractor plane exists. 
However, such a plane may be rare in practice. In this 
paper, the two possible orientations of the ML-attractor 
are described as aML- and eML- attractors, respectively. 

The distribution of aML- and eML- attractors over 
different flow types can be expressed in terms of W,, A, 
and T,. The critical value separating aML- and eML- 
attractors, when an attractor plane exists, is 

or 

a = e (Fig. 5b), (10) 

b+c b-c . 
a = 2 + 2 .sma, (10) 

which implies that 

sina!=2a-b-c=2T _A b-c n n’ 

and since 

(11) 

sina!= 
J 

1- Wi 

(Passchier, 1988); 

2T, - A, = Wd 

(cf. Passchier, 1987); where 

(12) 

(13) 

w*= Jl- w; (14) 

(Passchier, 1988). 
Equation (13) can also be given in terms of normalised 

volume change rate using equation (7) as; 

2v” -3A, = wd, (15) 

or 

3T, - v,, = wd. (16) 

Notice that for plane strain flow (T,, = O), 

W,=-A,=-V, (17) 
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and for isochoric flow (V, = 0): 

Wd = -3A, = 3T,, (18) 

Figure 6 shows a three dimensional graph for W,-A,- 
T, space in which any monoclinic flow type can be 
plotted as a point. This diagram shows the distribution of 
flow types that lead to development of aML- and eML- 
attractors through progressive deformation with invari- 
able flow parameters; the oblique cylinder-surface sepa- 
rates domains of aML- and eML-attractors, based on 
Eq. (13). The curved line on the cylinder-surface is the 
intersection with the plane of isochoric flow types (V, = 0; 
T,, = -A,). The following conclusions can be drawn 
from Fig. 6 and from Eq. (13): 

(1) If T, = 0 (plane strain flow), an eML-attractor 
exists for any W, value if A, > 0; this would imply 
instantaneous volume increase (I’, > 0; Fig. 2). If A, < 0 
(instantaneous volume decrease; V, < 0; Fig. 2), an eML- 
attractor exists at low W,-,-values up to a limit described 
by equation (17). However, at A,, < - 1 an aML-attractor 
exists for all W, values. Notice that at A, = 0 and W,, = 1 
or - 1 (simple shear), small deviations in A,.,, W,, or T,, 
can cause development of an aML-attractor instead of 
the eML-transit of simple shear (Fig. 6). Simple shear is 
extremely sensitive to small deviations from ideal 
conditions. Other non-coaxial flow types at lower W,, 
values, will have eML-attractors except at extreme 
deviations in T, or A,. 

(2) If T, ~0 (Figs 2 & 6), an eML-attractor exists 
except at very low A, values, which are probably never 
attained in rocks. 

(3) If T, > 0, the conditions at which an eML- or aML- 
attractor can be reached are complicated and described 
by Eq. (13). 

ATTRACTORS OF FINITE STRAIN AXES 

Most fabrics in rocks reflect the orientation of finite 
strain axes rather than the preferred orientation of 
material lines. Analogous to material lines, the principal 
axes of the finite strain ellipsoid also tend to rotate 
towards attractors (e.g. Ramsay and Huber, 1983). This 
is most obvious when the behaviour of the X-axis of finite 
strain is considered, which commonly defines the orienta- 
tion of mineral and stretching lineations and many 
foliations in rocks. 

The accumulation of finite strain is a function of the 
flow parameters discussed above. For 05 W, < 1 mono- 
clinic flow can be described by a flow tensor L; 

[ 

a 0 0 

Lx 0 by V<l + W,) 

0 F(l - W”) b+c 
2 1 

[ 
2T,,i 0 0 

(19) 

= 0 A,S s+w,s ) 

0 S - W,S A,S I 

where S is the stretching rate defined in Eq. (1). L can be 
used to derive a finite position gradient tensor Ff at a time 
t, accumulated by progressive deformation at constant, 
invariable flow parameters following Ramberg (1975), 
McKenzie (1979) and Passchier (1988): 

exp(2TnSd 0 
F/ = 0 exp(&Wcosh(WdW 

0 e”p’A”~~‘-W”)sinh(WdSI) exP(,‘k&hsh(WdS,) 1 
where 

(20) 

s, = St. (21) 

eML- attractor 
aML- attractor 

I. 

Fig. 6. W,-A,-T, space showing the distribution offlow types with an ML-attractor along a (left) and e (right). A cylindrical 
surface separates the domains. The arc on the cylindrical surface represents its intersection with the plane of isochoric flow 
types (V, = 0 or T, = -A,; no volume change). Each type of monoclinic flow can be presented by a point in this IV,--,4,-T, 

diagram. 
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St, the product of stretching rate and time, is a useful 
dimensionless number which serves as a universal 
measure of strain at a certain stage of progressive 
deformation, regardless of the type of deformation path. 

If 05 IVn-= 1 Eq. (20) can be rewritten in terms of 
principal finite strains (stretch values) as (Passchier, 
1988): 

SI = exp(2T&), (22) 

s2 = w;)), 

(23) 

s3 = - - dz - W;)}; 

(24) 

and for W,= 1: 

~1 = exp(2T&), (25) 

(26) 

s3 = -exp(A,S,) (27) 

(a> (b) 

By definition, s1 accumulates along a, while s2 and s3 lie 
in the b-c plane. Notice that 1,2 and 3 refer to directions, 
not relative magnitudes of the principal finite strains. 

The orientation of an X-attractor depends on the 
relative magnitudes of sl, s2 and s3. s2 rotates from the 
position of b at infinitesimally small strain towards e. 
However, e only acts as an X-attractor if s2 is the longest 
finite strain axis (e-X-attractor); if si is the longest axis, a 
will be the X-attractor (ax-attractor). The boundary 
between an aX- and eX-attractor lies at s1 = SZ. 

Using a spreadsheet, the accumulation of progressive 
deformation can be calculated using the equations (22)- 
(27), and the transition from si > s2 to s1 <s2 can be 
determined. This leads to the following results: 

(1) At W, = 0, the result depends on the magnitudes of 
a, b and c: strain simply accumulates fastest along the axis 
with highest stretching rate, either a (ax-attractor; X 
accumulates parallel to a) or the combined axis b = e (e_X- 
attractor; X accumulates parallel to b = e). 

(2) At 0 < W,i 1 or - 1 I W,, c 0, the result depends on 
the magnitude of a. If as0 in all stages of progressive 
deformation then an eX-attractor exists (Fig. 7a). If a > 0, 
the situation is more complicated. Pfiffner and Ramsay 
(1982) have shown that finite strain accumulates more 
slowly in simple shear than in pure shear at similar 
instantaneous stretching rates. This means that, if 
0 ta < b, s2 can initially exceed st but this situation may 

ay ape 

W 

Cc) 

a 

C b s e 

eX-attractor e/ax-attractor ax-attractor 

0 Tn w 

Fig. 7. The three classes of development of fmite strain ellipsoids with respect to X-attractors in progressive deformation by 
monoclinic flow, shown for three different T, values and similar W,. (a) eX-attractor; in plane strain (7’” = 0), the X-axis rotates 
towards e. (b) e/aXattractor; at a small T,, Xmay first rotate towards e, then accumulate along a. (c) U-attractor; at high T,, 

Xaccumulates along a throughout the deformation history. The bold line in ellipsoids is parallel to a. 
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reverse during progressive deformation since strain 
accumulates most rapidly along a (Fossen and Tikoff, 
1993; Tikoff and Teyssier, 1994; Fig. 7b); this attractor 
‘swapping’ is referred to here as e/ax-attractor. Only if 
a > b, sl> s2 in all stages of progressive deformation and 
an ax-attractor always exists (Fossen and Tikoff, 1993; 
Fig. 7~). The limiting condition a = b can be rewritten in 
terms of kinematic numbers as; 

2T,-A,= 1, (28) 

and this is the equation separating domains of e/ax- and 
ax-attractors. In terms of V,: 

3T, - Vn = 1, (29) 

and 

2V, - 3A, = 1. (30) 

Figure 8 is a W,-A,-T,, diagram similar to Fig. 6 in 
which two surfaces separate domains of flow types that 
lead to development of ax-, e/ax- and eX-attractors 
through progressive deformation with invariable flow 
parameters. The planar surface represents Eq. (28) and 
separates domains of a.%‘- and e/ax-attractors. The 
curved surface (as in Fig. 6) separates the e/ax- from the 

eX-attractor domain and represents Eq. (13). 
Small deviations from ideal simple shear in a ductile 

shear zone (Fig. 8) may cause development of an aX- 
attractor at high strain rather than the expected eX- 
transit of simple shear, since flow shifted to the e/aX- 
attractor domain. 

APPLICATION OF THE ATTRACTOR CONCEPT 

The concept of attractors of material lines or of the X- 
axis of finite strain as described above can be used in 

eX e/aX 

studies of flow and fabric development in rocks, espe- 
cially in high-strain rocks and for modelling using non- 
standard flow types. In the following section, the 
attractor concept is applied to some aspects of structural 
geology in order to illustrate how it may be used. 

Transpressive shear zones 

Flow in model transpressive shear zones (Harland, 
1971) is volume constant, and thinning of the shear zone 
is compensated by extension parallel to a and w; no 
stretch occurs along the shear zone boundary in the b-c 
plane of flow (Sanderson and Marchini, 1984; Fossen and 
Tikoff, 1993; Robin and Cruden, 1994; Krantz, 1995). 
Transpressive shear zones plot in the V,, = 0 plane, which 
is a cross-section through Fig. 8 shown in Fig. 9(a). 
Transpressive shear zones plot on the circle where 
Wn2 + An2 = 1, and lie in both the e/ax- or ax-attractor 
fields (Fig. 9a, TP). At high strain, such zones therefore 
inevitably develop with X (and therefore stretching 
lineations) parallel to a and w (Fig. 9b). This means that 
asymmetric structures, used to determine sense of shear, 
will be found on outcrop surfaces normal to the stretching 
lineation, and not on surfaces parallel to the lineation as 
for shear zones with simple shear flow (Fig. 9b). 
Examples of such unusual shear zones have been 
described from Canada (Hudleston et al., 1988; McDo- 
nough and Simony, 1989; Robin and Cruden, 1994) 
Sweden (Robin and Cruden, 1994; Talbot and Sokoutis, 
1995) and NE-Spain (Carreras and Druguet, 1994). The 
diagram of Fig. 8 can also be used to predict the 
behaviour of shear zones other than simple shear or 
transpression, and at V,, # 0. For example, at V, = 1 or 
V, = - 1, the circle of ‘transpression’ flow lies completely 
in the eX- or ax-fields (Fig. SC). 

aX 

An 

Fig. 8. W,-,4,-T, space showing the distribution of flow types that lead to an aX-attractor (left), an eX-attractor (right) and a 
transitional domain with e/ax-attractor (centre), provided that deformation proceeds by time-independent flow. The 
cylindrical surface that separates e/ax- and eX-domains is similar to that in Fig. 6. Bold lines on the limiting surfaces represent 

their intersection with the plane of isochoric flow (V, = 0 or T, = -A,: no volume change). 
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Fig. 9. (a) Cross-section through Fig. 8 for V, = 0. Three-dimensional flow types can be plotted as points in this plane and the 
geometry of flow and finite deformation depends on W, and A, (or T,). Three fields of increasing shading are domains of eX-, 
e/ax- and ax-attractors. The position of flow types in simple shear (SS) and transpression (TP) shear zones is indicated (only 
shown for dextral shear sense as illustrated in (b)). Transpression flow types lie in the ax-and e/ax-fields, and develop 
stretching lineations parallel to the vorticity vector at high strain. (b) Fabric development in simple shear and transpression; 
transpression is shown with a horizontal vorticity axis for convenience. S-foliation; L-stretching lineation. A foliation plane is 
indicated in grey. (c) Cross-sections of Fig. 8 for two types of instantaneous volume increase (V, = 1) and decrease (V, = - 1). 

Attractor-meshes 

The attractor concept can be particularly useful in 
studies or models of heterogeneous deformation. For this 
application, attractors should not be treated as isolated 
straight lines, but as a mesh of curved lines in space, as 
explained below. 

Lineations are usually presented on maps and draw- 
ings as isolated lines of a specific orientation. In reality, 
they form a mesh of subparallel linear structures in the 
rock with a complex three-dimensional shape. This mesh 
may change laterally in orientation, be folded, or bend 
around rigid objects. In a similar way magnetic field lines, 
principal stress axes and ISA can be envisaged to form 
different meshes of lines inside a volume of material. A 
distinction may be made between permanent meshes such 
as that of different types of lineations, which can actually 
be sampled and measured in a rock and transient meshes 
such as that of stress axes or ISA which can be imagined 
to exists temporarily during progressive deformation. 
Transient meshes can shift through a volume of material; 
permanent meshes are fixed in the rock and can only 
change shape by deformation. Finite strain axes and 
material lines form separate permanent meshes since they 

do not remain parallel during non-coaxial progressive 
deformation. 

ML-or X-attractors as described in the previous 
sections can be imagined as being arranged in a transient 
mesh that is present in deforming rocks. Ductile deforma- 
tion can be regarded as a permanent attempt of the meshes 
of material lines and strain axes to adapt to the shape of 
the attractor-mesh; only in time-independent pure shear 
flow do these meshes coincide throughout the deforma- 
tion history; in non-coaxial flow histories, the meshes of 
material lines and strain axes will only approach parallel- 
ism with the attractor-mesh at high finite strain. The 
attractor-mesh is in its turn related to the stress mesh, 
their degree of coincidence depending on the rheology and 
anisotropy of the rock and lateral variations therein. 

The concept of an attractor-mesh can also help to 
model development of structures formed by inhomoge- 
neous flow. The next paragraphs serve to illustrate the 
concept. 

Application of the attractor-mesh concept 

In the case of homogeneous non-coaxial flow and 
progressive deformation with non-variable parameters, 
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the attractor-mesh consists of straight parallel lines. 
Material lines and finite strain axes attracted to the lines 
of such an attractor-mesh will also form straight 
lineations and planar foliations, which will approach 
parallelism with the attractor-mesh at high finite strain. 
Such ‘straight’ fabrics are found in the core of medium-to 
high-grade shear zones, which may represent a regime 
where attractor-meshes of this type are common. 

Slightly more complex is the situation in shear zones 
with deforming wall rocks, such as stretching shear 
zones. A stretching shear zone (Means, 1989) is a plane- 
strain shear zone with wall rocks that undergo ductile 
extension during non-coaxial flow in the zone (Fig. 10). 
Flow in such a stretching shear zone is non-coaxial with 
O<W,<lor -l<W,<OandplotsalongtheA,=Oand 
T, = 0 axis in the diagram of Fig. 8. 

Imagine a simple model of a stretching shear zone with 
coaxial progressive deformation in the wall rock (Fig. 
10). Both in the shear zone and in the wall rock, e is 
parallel to the shear zone boundary and acts as both an 
eML-and eX-attractor. The attractors can be imagined to 
form a mesh of lines in the rock parallel to the shear zone 
boundary (Fig. 10). Material lines and the X-axis of 
strain rotate towards the attractor-mesh in the shear 
zone, and accumulate along it in the wall rock (Fig. 10). 
The result is in an inward-steepening fabric gradient, 
which will evolve into a fabric subparallel to the 
attractor-mesh (and thus to the shear zone boundary) at 
high finite strain. 

In heterogeneous flow and progressive deformation, 
the attractor-mesh may be visualised as being bent in a 
complex way, and this geometry will change with time. 
Although material lines will be attracted to the mesh, it is 
difficult to predict what the final fabric will look like. In 
many cases, the fabric may mimic the irregular shape of 
the attractor-mesh. As a simple example, consider an 

flow types t=l 
+ b 

elongate rigid boudin in non-coaxial flow: the attractor- 
mesh will wrap around the boudin, and foliations and 
lineations that develop at this site will consequently be 
curved (Fig. 11). 

An interesting curiosity is that attractor-meshes may 
locally develop ‘holes’, where no attractor is present. This 
is probably most common for transit-meshes such as in 
the case of simple shear. Consider a simple shear zone in 
which flow is slightly inhomogeneous in the sense that the 
rotation component of flow is not constant over the zone 
(Simpson and DePaor, 1993; Fig. 12). Locally, transient 
domains occur where I%‘, is either smaller or larger than 
1. Where W, < 1, the ‘transit-mesh’ grades into an 
attractor-mesh and is simply continuous, but where 
I#‘, > 1, it is interrupted, since under such conditions no 
apophysis is present in the tic plane (Figs 3 & 12; 
DePaor, 1983; Passchier, 1988). In the ‘hole’, material 
lines can rotate beyond the orientation of the transit in 
the surrounding mesh, and folds develop as a conse- 
quence: this may be an important cause for the develop- 
ment of sheath folds in mylonites developed in simple 
shear (Hudleston, 1976; Vollmer, 1988). In shear zones 
with a lower W, and e parallel to the shear zone boundary 
(Coward, 1976; Ramsay, 1980; Kligfield et al., 1981; 
Paterson and Waingler, 1991) an attractor-mesh rather 
than a transit-mesh is present; a ‘hole’ is less likely to 
develop in such an attractor-mesh since much larger 
fluctuations in W, are necessary. On theoretical grounds, 
it is therefore less likely that shear folds develop in low- 
W, shear zones. 

Another possible site where holes or deflections in an 
attractor- or transit-mesh occur is near a rotating rigid 
object in non-coaxial flow (Fig. 13). At some distance 
from the object, the mesh is curved but continuous, and 
this causes curving of foliations and lineations near the 
object; at high strain the fabric will mimic the shape of the 

t=2 

-r x X-attractor foliation 
Fig. 10. Two stages in the development of a stretching shear zone illustrating the concept of an attractor-mesh. Flow types in 
the wall rock and the shear zone are illustrated at left by ISA (bold black arrows) and the attractor apophysis e (grey arrow). 
Grey lines in the diagrams at right represent the attractor-mesh; black lines represent the developing shape fabric. The shape 

fabric develops parallel to the attractor-mesh in the wall rock, but rotates towards the mesh in the shear zone. 
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I 

X-attractor shape fabric 

Fig. 11. Flow around a rigid boudin may define a curved attractor- 
mesh (grey lines) which governs the development of the shape fabric 
(black lines). At high strain, the shape fabric mimics the shape of the 

attractor-mesh. 

W,=l 

(bulk) 

wn>l 

(local) 

I 
progressive deformation 

-., “m..v_;>* __j*** X-transit 

shape fabric 

Fig. 12. Development of a sheath fold in simple shear. The transit-mesh 
of simple shear (grey lines) is interrupted at one spot where flow has a 
W, value > 1. At this point, the shape fabric (black lines) can rotate 

“through” the orientation of the mesh, and develop sheath folds. 

curved attractor (Passchier, 1994). Immediately adjacent 
to the rigid object, however, a mesh of elliptical lines 
exists which is not continuous with the external mesh. 
Here, material lines can wrap around the object indefi- 
nitely. This may be the cause of the development of 6- 

objects and quarter folds (Hanmer and Passchier, 1991; 
Simpson and DePaor, 1993; Passchier and Trouw, 1995; 
Fig. 13). 

Kinematic analysis using attractors 

Since shape fabrics and elongate objects rotate towards 
parallelism with attractors at high strain, the orientation 
of such fabric elements can be used in high-strain zones to 
determine the approximate orientation of attractors, or 
even attractor-meshes. Since attractors are part of the 
kinematic frame of flow, flow parameters such as W,,, T, 
and A, can theoretically be deduced from rock fabrics if 
the orientation of additional elements of the kinematic 
frame can be found. T,, and A, can be determined from 
volume change and three-dimensional strain data. The 
geometry of fibre aggregates (Passchier and Trouw, 1995) 
can be used to determine the orientation of ISA with 
respect to the attractor and, since W, defines the angle 
between ISA and the attractor, these data could be used 
to find W,. Such analyses may give relevant results if flow 
was monoclinic and if flow geometry did not change 
much during progressive deformation. In other cases, 
fibre trajectory analysis (Fisher and Anastasio, 1994; 
Passchier and Trouw, 1995) may help to determine flow 
evolution. 

Fabric attractors 

Flow apophyses may serve as attractors of material 
lines or finite strain axes, but other fabric elements have 
also been reported to show a specific preferred orienta- 
tion with respect to elements of the kinematic frame. 
Some examples are: the central girdles of quartz crystal- 
lographic fabrics that seem to be fixed orthogonal to the 
ML-attractor (Lister and Hobbs, 1980; Schmid and 
Casey, 1986), probably because crystal slip planes rotate 
towards the attractor (Passchier and Trouw, 1995); 
oblique foliations which make a small but fixed angle 
with ISA (Means, 198 1; Passchier and Trouw, 1995); and 
C-planes in a C-S fabric which seem to be fixed parallel 
to an ML-attractor or transit (Berthe et al., 1979; Lister 
and Snoke, 1984). All these fabric elements have an 
orientation that is independent of finite strain, although 
the strength of the fabric increases with finite strain. It is 
therefore possible to classify them as fabric elements that 
accumulate near some kind of attractor: a general 
concept of fabric attractors can be defined, the nature 
and orientation of which depends on the type of fabric 
concerned (Passchier and Trouw, 1995). For example, a 
subdivision of foliations may be possible into those that 
approach an attractor, those which are fixed to an 
attractor and those that are independent. In this paper, 
treatment is restricted to ML- and X-attractors. 
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X-attractor shape fabric 

Fig. 13. Deformation around a spherical rigid object in non-coaxial 
flow. The attractor-mesh (grey lines) is deflected near the sphere, and 
consists of isolated elliptical scales adjacent to the sphere. The 
developing shape fabric (black lines) near the sphere rotates around 

the sphere within the elliptical mesh-segment. 

CONCLUSIONS 

Three dimensional flow in shear zones is thought to be 
approximately monoclinic. Any type of monoclinic flow 
can be fully expressed by three numbers, W,, A, and T, 

which determine the nature and orientation of flow 
apophyses. Flow apophyses can be divided into attrac- 
tors, transits and repulsors of material lines, principal 
finite strain axes and crystal slip planes. Foliations and 
lineations can be expected to accumulate near attractors 
and an understanding of the nature and orientation of 
attractors in deforming rocks can be of use for modelling 
and studies of fabric development. Examples are the 
development of lineations parallel to the vorticity vector 
in transpressive shear zones, and the development of 
sheath folds and mantled porphyroclasts or boudins. The 
concept of attractors is an alternative way to look at the 
accumulation of fabrics in rocks, and allows a better 
integration of flow modelling and fabric analysis in 
tectonic studies. 
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