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Vorticity and strain analysis using Mohr diagrams 
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Abstract--Fabric elements in naturally deformed rocks are usually of a highly variable nature, and measurements 
contain a high degree of uncertainty. Calculation of general deformation parameters such as finite strain, volume 
change or the vorticity number of the flow can be difficult with such data. We present an application of the Mohr 
diagram for stretch which can be used with poorly constrained data on stretch and rotation of lines to construct 
the best fit to the position gradient tensor; this tensor describes all deformation parameters. The method has been 
tested on a slate specimen, yielding a kinematic vorticity number of 0.8 _+ 0.1. 

INTRODUCTION 

ONE of the aims in structural geology is the reconstruc- 
tion of finite deformation parameters and the deforma- 
tion history for small volumes of rock from the geometry 
and orientation of fabric elements. Such data can then 
be used for reconstruction of large-scale deformation 
patterns and eventually in tracing regional tectonics. 
Methods for determination of the two finite deformation 
parameters, finite strain and volume change, are well 
established (see e.g. Gratier 1983, Ramsay & Huber 
1983) but deformation history is not so easily recon- 
structed: every progressive step of the deformation 
overprints older effects, and all data must be retrieved 
from the final rock fabric. 

At present there are two ways to increase our capa- 
bility to obtain data on the deformation path from the 
final fabric: (i) determination of the mechanisms of 
fabric development in order to correctly interpret those 
fabrics in terms of flow or deformation parameters (e.g. 
Platt & Vissers 1980, Lister & Snoke 1983, Jessell 1986, 
Passchier & Simpson 1986, Schmid & Casey 1986); 
and (ii), development of a theoretical background show- 
ing how the variation of flow parameters with time 
influences finite deformation (Means et al. 1980, De 
Paor 1983, Passchier 1986, in press). 

One of the most important parameters to determine 
the shape of the deformation path is the kinematic 
vorticity number. This number can be somewhat loosely 
described as the ratio of pure shear to simple shear 
components of flow (for definition, see Truesdell 1954 
and Means et al. 1980). The value of this number during 
deformation has important consequences for the stretch 
and rotation history of individual material lines. For 
example, if flow in two shear zones was characterized by 
different vorticity numbers, the deformation history in 
shear zone and wall rock of both zones must have been 
different for each, even though finite strain and volume 
change values may be identical. Therefore, knowledge 
of the vorticity number is useful in structural analysis, 
especially for the study of crystallographic fabric 
development and in regional tectonic reconstructions. 

Two recent papers have suggested ways to determine 
this number in naturally deformed rocks (Ghosh 1987, 
Passchier 1988). These methods rely on the recognition 
that certain fabric elements in naturally deformed rocks 
have a memory for sense of shear and flow vorticity 
number. Some examples are rotated porphyroblast- 
foliation systems (Ghosh 1987); sets of folded and 
boudinaged veins; sets of rigid objects of variable aspect 
ratio; tails of recrystallized material around rigid 
objects; and systems of bedding, foliation and syn- 
kinematic fibrous veins (Passchier 1988). 

FLOW PARAMETERS AND DEFORMATION 

Homogeneous ductile flow can be geometrically 
described by equations such as 

X = LX, 

where L is the velocity gradient tensor, X a position in 
space and X the rate of displacement of a particle at 
that position (Malvern 1969, Lister & Williams 1983, 
Passchier 1986). Even where bulk flow is not homogene- 
ous, the deforming volume can be subdivided into 
approximately homogeneously deforming parts for 
which equations as given above are a satisfactory 
approximation. L can be described in terms of a mean 
stretching rate, r, a volume change rate, a, and a 
kinematic vorticity number 

Wn = W/2r ,  

where W is the flow vorticity (Means et al. 1980, 
Passchier 1986). Note that for simple shear flow Wa = 1 
and for pure shear flow Wa = 0. 

Finite deformation produced by ductile flow can be 
described by the Lagrangian position gradient tensor F 
which relates the position of material particles in the 
undeformed and deformed states as 

X '  = F X .  

F contains information on finite strain, volume change 
and rigid body rotation. For suitably chosen reference 
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frames (as explained below), a simple relationship exists 
between components of F and Wn (Passchier in press). 
In practice, however, it is difficult to calculate F from 
fabric data in naturally deformed rocks, or even to 
determine which and how many fabric data are needed 
for a solution. A Mohr circle construction can solve most 
of these problems and can also be used to calculate W, 
from components of F. 

F=[Fu ' F121 
L F21, F22 J 

(F22 F 

a ~ /~'( Fll, F21 ) 

THE MOHR CIRCLE FOR F 

Finite deformation produced by flow types of mono- 
clinic or higher symmetry can be defined by a 3 x 3 
tensor F, or by a two-dimensional 2 x 2 tensor describ- 
ing flow in planes normal to the vorticity vector, and a 
factor describing stretch parallel to this vector. Means 
(1983) explained how any 2 x 2 tensor (such as F )  can 
be represented by a Mohr circle. This is done using the 
components Fij of the tensor to define two points in Mohr 
space with Cartesian co-ordinates (F22, F12) and (FIj, 
-F2~ ). These points lie at opposite ends of a Mohr circle 
diameter (Fig. la). In fact, Cartesian co-ordinates of any 
two points 180 ° apart on a Mohr circle give the numerical 
components of the tensor with respect to a specific set of 
co-ordinate axes. This is the Mohr circle equivalent of 
the tensor transformation equation (see Means et al. 
1980 for full explanation and proof). 

In the case of the position gradient tensor, Means 
(1982) has elegantly shown that the polar co-ordinates of 
points on the Mohr circle have interesting properties. 
They are equal to stretch (s) and angle of rotation of 
material lines after a given finite strain (Fig. lb-d).  In 
addition, the angle (2r/) measured between points along 
the circle is equal to twice the angle between these lines 
(in real space) in the undeformed state. 

Progressive deformation is described in this Mohr 
diagram by a series of circles 'growing' in a regular way 
from (1,0), depending on the degree of non-coaxiality 
(see Passchier 1988 and in press for further explanation). 
The off-axis position of these Mohr circles reflects the 
rigid body rotation component of F. For homogeneous 
flow, Passchier (1988, in press) has presented the 
relationship 

Q/R = W~, 

where Q is the elevation of the circle centre above the 
horizontal axis, R is the circle radius (Fig. ld) and W~ is 
a mean value of the kinematic vorticity number for the 
local deformation history, which equals W, in the special 
case that this number remained constant during the 
deformation. Note that this equation is only valid if F is 
described in a reference frame which is fixed with respect 
to the instantaneous stretching axes (ISA) of the flow 
(Lister & Williams 1983, Passchier 1986). These are the 
orthogonai directions of minimum and maximum 
stretching rate in a homogeneously deforming material. 
Although ISA cannot be directly represented in a Mohr 
diagram for F, material lines coinciding with ISA at the 
first increment of deformation can be shown to lie at 
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Fig. 1. (a) Representation of a tensor F in Mohr space using the 
convention of Means et al. (1980). Homogeneous deformation in real 
space (b) and (c) can be represented as a Mohr circle (d) by plotting 
stretch and rotation of individual material lines (p, m, n) as polar 
co-ordinates in Mohr space (e.g. s, ~z, for line p). The angle ~/between 
any two lines (e.g. m and n) in true space before deformation is plotted 
as 2q along the Mohr circle. Size and position of the Mohr circle 
depends on the deformation parameters and can be defined by the 

numbers 7", Q and R. 

opposite ends of a horizontal diameter of the circle and 
be used as useful markers (see e.g. C and D in Fig. 5). 

In what follows, we present a method to reconstruct 
the Mohr diagram for F using data on stretch and 
rotation of lines with respect to ISA and on area change 
in the plane normal to the vorticity vector. The Mohr 
diagram is then used to calculate F, W~ and other 
deformation parameters. 

DATA AND INTERPRETATION 

The samples investigated in this study were taken 
from a slate quarry on the north side of Highway No. 4, 
New York state, 3 km SW from the New York-Vermont 
border. The regional geological setting is in an internally 
folded thrust slice, bounded by melanges of the Taconic 
thrust system (see Bosworth & Kidd 1985 and fig. 12 of 
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Fig. 2. Photograph of the outcrop studied, looking south. Ba---bedding with refracted veins; F--folded bedding associated 
with veins in the closure; V0 and Vy--calcite veins; Sz--main foliation. 
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Fig. 3. (a) Photomicrograph of V~wV, intersection showing fibres in boudin necks in V~, parallel to fibres in Vr. The 
penetrativc cleavage in the slate is S_~. Scale of bar is 0.1 mm. (b) Photograph of the thin section on which the microprobe 

measurements in Fig. 7 were carried out. Traverses are indicated by black lines, scale bar is 5 mm. 
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Fig. 4. Tracing of a photograph of a thin section (width 20 mm), 
showing the fabric elements used in this study. Ba---bedding; $1 and 
S2--cleavages; Vo and Vf---two generations of antitaxial fibrous veins. 
The internal structure of the veins was drawn to indicate grain shapes, 
and lines do not always correspond to fibre boundaries. Pyrite crystals 

(black) are associated with quartz fibres in pressure fringes. 

Bosworth & Vollmer 1981 for an illustration of the 
large-scale structure). From the map of Bosworth & 
Kidd (1985), it is apparent that the quarry is located on 
the normal limb of a west-facing, tight to isoclinal, 
moderately eastward-inclined syncline-anticline pair 
and our interpretation of the small-scale deformation is 
in agreement with this setting. 

In sections perpendicular to bedding and intersection 
lineations, the following fabric elements are present 
(Figs. 2 and 4). 

(a) Layers of black slate (Bd), up to 5 cm thick, 
composed of white mica, chlorite, quartz and pyrite + 
other opaques, alternating with sandy layers rich in 
quartz, calcite and pyrite. 

(b) A first cleavage ($1) parallel to bedding, which is 
developed as a continuous cleavage in the slate layers 
and as a spaced, pressure solution type cleavage in the 
sandy layers. 

(c) Local small-scale asymmetric folds of bedding and 
S1, spatially associated with calcite veins (see Figs. 2 
and 4). 

(d) A second cleavage Sz, developed at low angle to 
bedding, completely transposing S1, which is only pre- 
served in hinges of the folds just described. Regions with 
$2 development show a marked concentration of opaque 
particles, and a decrease in quartz and calcite content. 

(e) Two generations (V 0 followed by Vy) of fibrous 
antitaxial calcite veins, with a well-defined median line 
(Durney & Ramsay 1973), mostly present in the slate 
layers. On entering a quartz-rich layer from the slate, 
they are commonly strongly refracted (Fig. 2). Veins 
from set V0 often occur along the axial plane of the folds, 
approximately perpendicular to the local orientation of 
$1. They are strongly boudinaged, with vein-parallel 
calcite fibres growing in the boudin-necks (Fig. 3a). The 
original fibrous texture is surprisingly well preserved, 
however, with the internal microstructure of calcite 
fibres ranging from optically completely strain-free to 
slightly deformed, with incipient recrystallization along 
the grain boundaries. 

Veins from set Vy show clear cross-cutting relation- 
ships with $2, and the curved calcite fibres are invariably 
almost completely strain-free optically, with minor twin- 
ning. Vy fibres adjacent to the vein wall are parallel to 
fibres in the boudin-necks of V0 and to terminations of 
pressure fringes around pyrite framboids in the slate 
(Figs. 3a and 4). Serial sectioning shows the lines of 
intersection of bedding, cleavage, and both sets of veins 
to be parallel to the fold axes. We therefore infer this 
intersection to be parallel to the vorticity vector of flow 
in the volume of slate considered. No traces of stretching 
of V0 in this direction could be detected, which means 
that possible bulk volume change equals area change in 
the surface normal to the vorticity vector. 

We interpret the data in terms of a deformation 
history as follows. After the formation of the first 
cleavage (which represents an unknown deformation 
stage), the material deformed in a strongly non-coaxial 
way. At some time during this stage, the first set of veins 
(V0) was formed at a high angle to bedding, approxi- 
mately in a tension gash orientation (Ramsay & Huber 
1983, p. 50). Williams and Urai (in press) show that 
antitaxial fibres in veins do not necessarily track the 
opening direction of such veins. In the rocks studied, 
however, undeformed fibres in V0 invariably connect 
marker layers over the veins, indicating that here fibres 
grew parallel to the opening direction, and therefore to 
ISA (Durney & Ramsay 1973, Williams & Urai in 
press). The veins rotated clockwise (looking south), 
causing a perturbation of the flow pattern and sub- 
sequent generation of the folds (e.g. Hudleston 1984). 
Deformation was strongly partitioned between the more 
competent quartz-rich layers and the slate, causing the 
observed refraction of the veins (Lister & Williams 
1983). After initial shortening, the veins entered the 
extension field and were boudinaged and broken, with 
calcite fibres growing in the boudin-necks. During 
rotation of V0 part of the fibres were plastically deformed 
and therefore could have changed their orientation with 
respect to the vein walls; however the deformed fibres 
are parallel to fibres in undeformed V0 veins, so this was 
probably not a significant effect. According to Bosworth 
& Vollmer (1981), deformation took place under low 
temperature, high fluid pressure conditions. Calcite was 
apparently stronger than the matrix and deformed 
dominantly in a brittle way. Vy was formed at a later 
stage, and these veins rotated over approximately 45 ° 
until the end of deformation. 

Because of the straight $2 cleavage and the absence of 
large systematic changes in the angle between fabric 
elements in these regions it seems reasonable to assume 
that homogeneous deformation was approached in the 
slate layers (Fig. 2). 

RECONSTRUCTION 

Instead of plotting data on stretch and rotation of 
material lines (Fig. 5a) as polar co-ordinates in an 
orthogonal reference frame to find the diameter and 
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Fig. 5. Construction method of the Mohr  diagram for F. Data on initial 
orientation of two material lines A and B with respect to C and D (a 
and fl) in real space (a) can be plotted in Mohr  space on an arbitrarily 
chosen circle (b) as double angles. Material lines C and D coincided 
with ISA at the onset of  deformation.  The reorientation of A and B 
due to finite deformation (/;/'A,~rB) in true space (a) can be plotted in 
Mohr space (b) by drawing lines from A and B at angles ~PA and ~/'B to 
a marker  line (11 to C -D)  into Mohr space. Their  intersection 
represents the origin of the reference frame of Mohr  space. The 
dimensions on the co-ordinate axes can be found (d) if the stretch (s) 

on one of the material lines (A in this case) is known. 

position of the Mohr circle (Allison 1984, De Paor & 
Means 1984, Treagus 1986), we propose to use the 
following construction: starting with a circle of arbitrary 
diameter (Fig. 5b), data on stretch and rotation of 
material lines are used to find the origin and dimensions 
of the Mohr space reference flame (Fig. 5c & d). Finite 
deformation parameters and W m can then be read from 
the Mohr circle (Fig. 5d). This method has the advantage 
that uncertainties in stretch and rotation values can 
easily be incorporated in the construction to find the 
limits of uncertainty of the results. 

For the rock studied, we proceed as follows: 
(i) the calcite fibres indicate that V0 was initially 

oriented at 0-10 ° from the instantaneous shortening 
axis, and rotated over 86-96 ° with respect to this axis 
(Fig. 6a); 

(ii) assuming only minor shear strain in the sandy 
layers (i. e. no significant rotation of V 0 with respect to B,I 
in these; Lister & Williams 1983), and that V0 veins were 
straight at the time of their formation, the angle between 
V0 and Bo before deformation can be constrained at 
90-120 ° (Fig. 6a); 

(iii) from the angle of refraction we deduce a rotation 
of 71-104 ° between I~ and Bd. We start the construction 
with an arbitrary circle, reference line and two points 
which represent the material lines coinciding with ISA at 
the onset of deformation (C and D in Fig. 5): these are 
chosen on the diameter of the circle which is parallel to 
the reference line. The ranges of possible orientations of 
V 0 and Bd with respect to ISA now define segments along 
the circle as shown in Fig. 6(c). In the diagram, the angle 
of rotation of V0 or Bj with respect to the external 
reference frame can be plotted as lines radiating from 
the respective positions on the circle (Fig. 6c). The 
origin of the co-ordinate system necessarily lies some- 
where along such a line. Intersecting lines from different 
data points, such as old veins and bedding, can deter- 
mine this position accurately; Fig. 6(c) shows how they 
define, within their range of uncertainty (Fig. 6a), a 
small domain which must contain the origin of the Mohr 
space. The dimensions of the diagram can now be 
determined as follows. The length of the lines joining 
possible V 0 positions on the Mohr circle with the domain 
containing the origin of Mohr space (Fig. 6b & c) equals 
the stretch of these lines in real space. A stretch value is 
estimated using the relative length of boudinaged parts 
of V0 and their boudin necks in veins which preserved 
their original fibrous habit; in these veins, the assump- 
tion of completely brittle behaviour during stretching 
seems reasonable. We have made a correction for the 
inferred value of initial shortening before boudinage 
started. By this method, s was relatively poorly con- 
strained at 1.25 _+ 0.4 (Fig. 6b). 

AREA CHANGE MEASUREMENTS 

Area change during the studied part of the deforma- 
tion in the plane for which F is described, was estimated 
by means of a chemical analysis. Changes in bulk 
composition were measured using a microprobe with a 
defocused beam (spot diameter 100 ~m), along traverses 
parallel to well-defined bedding traces in small-scale 
folds. The analysis was done in a different hand specimen 
from the same outcrop, where $2 in the slate was locally 
less intensely developed (Fig. 3b), allowing the transi- 
tion to a penetratively developed S 2 to be followed along 
bedding. The results show a clear trend: going from 
hinge to limb (i.e. with increasing intensity of $2 develop- 
ment) there is a clear increase in concentration of 
elements like Ai203 and TiO 2 (Fig. 7), together with a 
decrease in SiO 2 and CaO. Using the techniques 
described by Gratier (1983), an area decrease A,4 of 
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Fig. 6. (a) Data on original position and rotation of old veins (1/0) and bedding (Bd) with respect to ISA in real space. Striped 
and stippled domains show range of uncertainty of orientation of V 0 and Bd, respectively. (b) Data on bulk area change and 
stretch on V 0. (c) Orientation data define the two stippled domains in Mohr space which must contain the origin; their 
intersection (black) gives the range of uncertainty in the position of the origin for the data in (a). (d) Combined data on dA 
and stretch of 1/0 define the stippled domain which must contain the origin; these results agree with those in (c). R and Tare 
defined in Fig. l(d). (e) The Mohr diagram for F, based on (c) and (d). Ornamented domain indicates the range of 
uncertainty in the position of the reference frame. (f) Finite deformation parameters as determined from (e) and (d). 

(g) Synthetic deformation graphs for two tensors within the range of uncertainty ofF.  Stippled: Bd, striped: V0. 
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Fig. 7. Data from microprobe measurements showing change in 
chemical composition associated with development of S 2 in the sample 

of Fig. 3(b). 

approximately 50 + 10% is calculated, assuming no 
area change in the hinge regions (this is suggested by the 
absence of overgrowth structures in these regions), and 
unit stretch in the direction parallel to the vorticity 
vector. Calculations based on the enrichment of opaques 
(assumed to be immobile) in these zones are in agree- 
ment with this number. The microstructure in the sample 
for which a Mohr circle was constructed is identical to 
that in the most intensely cleaved part of the sample in 
which area change was measured. We therefore assume 
that area change in both samples is of similar magnitude. 

One of the properties of the Mohr circle for F is the 
relationship (table 1 in Passchier in press): 

T 2 = 1 + R 2 + AA (Fig, ld). 

In a dimensionless Mohr diagram, the origin must lie at 
distance T from the circle centre and at distance s 
(representing the stretch of V0), from the position of old 
veins on the edge of the circle. R has a fixed length in a 
dimensionless Mohr diagram, but its magnitude depends 
on the chosen scale. Varying the scale of the diagram 
allows the construction of a domain which must contain 
the origin of the Mohr space for specific values of s and 
AA (Fig. 6d). The domain in Mohr space, constructed in 
the previous paragraph from the rotation of old veins 
and bedding, lies within the curves of Fig. 6(d) for the 
range of uncertainty of the initial orientation of old 
veins. This supports the viability of the construction 
method. 

Note here that the tensor F reconstructed in this way 
describes only part of the total deformation, from the 
point in time when V0 was formed. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

The diagram constructed in Fig. 6(e) shows the range 
within which the reference frame of the Mohr diagram 
must lie. Using the conventions of Fig. l(a) (Means 
1983), this allows direct reconstruction of the com- 
ponents of F (including their range of uncertainty) and 
calculation of other deformation parameters (Fig. 6f) as 
follows. 

(1) The 'mean'  kinematic vorticity number 14~, ~, calcu- 
lated from the Q/R ratio (Passchier in press and in 
preparation), is estimated at 0.8 _+ 0.1; i.e. flow was 
non-coaxial approaching simple shear, but had a pure 
shear component. 

(2) Finite strain (1 + e) values, measured as 
maximum and minimum stretch values on the circle in 
Fig. 5(d) are 0.25 + 0.5 and 2.4 + 0.6. 

(3) Stretch of the bedding is between 1.2 and 2.1 
depending on its original orientation with respect to V 0, 
but always exceeding that of V0. Such high stretch values 
are not obvious from the microstructure in the bedding, 
but are confirmed by boudinage of thick beds elsewhere 
in the outcrop (Fig. 2), and by fringes around pyrite 
grains. 

The effect of the deformation described by F is illus- 
trated in 'synthetic deformation graphs' (Fig. 6g) for F,  
based on Fig. 6(e); they have been constructed reading 
stretch and rotation for sides of a square from two 
opposite points in the Mohr circle. 

(4) Folding of bedding occurs during extension and is 
a consequence of flow partitioning around the veins. 

In conclusion, a Mohr diagram for F can be con- 
structed from relatively poorly constrained data of 
variable nature. These properties make the method 
useful for the analysis of naturally deformed rocks, in 
which control on the nature of available data is poor and 
data can have a large range of uncertainty. The effect of 
each uncertainty in the data can be followed in the Mohr 
diagram and weighted in final conclusions or further 
work. 

Acknowledgements--We wish to thank Win Means for introducing 
J, L. Urai to the outcrop studied, for enjoyable discussions on vein 
fibres and for valuable suggestions on the manuscript. We are grateful 
to Manfred van Bergen for help with the (NWO/WACOM supported) 
microprobe. Thorough reviews by Declan De Paor and Sue Treagus 
are gratefully acknowledged. We thank the RSES of ANU for all their 
hospitality, to J. L. Urai during a visiting fellowship and to C. W. 
Passchier during his stay in Canberra awaiting the consequences of the 
grounding of Nella Dan. This work was supported by a C&C Huygens 
fellowship from the Netherlands Organization for the Advancement of 
Pure Research (NWO) and by NSF grant EAR 8306166 to J. L. Urai. 

R E F E R E N C E S  

Allison, I. 1984. The pole ot the Mohr diagram. J. Struct. Geol. 6, 
331-333. 

Bosworth, W. & Kidd, W. S. F. 1985. Thrusts, melanges, folded 



Vorticity and strain analysis using Mohr diagrams 763 

thrusts and duplexes in the Taconic foreland. In: New York State 
Geological Association 57th Annual Meeting Field Trip Guidebook 
(edited by Lindemann, R.). Skidmore College, Saratoga, New 
York. 

Bosworth, W. & Vollmer, F. W. 1981. Structures of the medial 
Ordovician flysch of Eastern New York: deformation of synorogenic 
deposits in an overthrust environment. J. Geol. 89,551-568. 

De Paor, D. G. 1981. Unpublished Ph.D. Thesis, National University 
of Ireland. 

De Paor, D. G. 1983. Orthographic analysis of geological structures 1. 
Deformation theory. J. Struct. Geol. 5,255--277. 

De Paor, D. G. & Means, W. D. 1984. Mohr circles of the first and 
second kind and their use to represent tensor operations. J. Struct. 
Geol. 6,693-701. 

Durney, D, W. & Ramsay, J. G. 1973. Incremental strains measured 
by syntectonic crystal growths. In: Gravity and Tectonics (edited by 
De Jong, K. A. & Scholten, R.). John Wiley, New York, 67-96. 

Ghosh, S. K. 1987. Measure of non-coaxiality. J. Struct. Geol. 9, 
111-115. 

Gratier, J. P. 1983. Estimation of volume changes by comparative 
chemical analyses in heterogeneously deformed rocks (folds with 
mass transfer). J. Struct. Geol. 5,329-339. 

Hudleston, P. J. 1984. Generation of folds in shear zones. Geol. Soc. 
Am. Abs. w. Prog. 16, 546. 

Jessell, M. V. 1986. Grain boundary migration and fabric development 
in experimentally deformed octachloropropane. J. Struct. Geol. g, 
527-542. 

Lister, G. S. & Snoke, A. 1983. S-C mylonites. J. Struct. Geol. 6, 
617-638. 

Lister, G. S. & Williams, P. F. 1983. The partitioning of deformation 
in flowing rock masses. Tectonophysics 92, 1-33. 

Malvern, L. E. 1969. Introduction to the Mechanics of a Continuous 
Medium. Prentice Hall, Englewood Cliffs, New Jersey. 

Means, W. D. 1982. An unfamiliar Mohr circle construction for finite 
strain. Tectonophysics 80, T1-T6. 

Means, W. D. 1983. Application of the Mohr-circle construction to 
problems of inhomogeneous deformation. J. Struct. Geol. 5, 279- 
286. 

Means, W. D., Hobbs, B. E., Lister, G. S. & Williams, P. F. 1980. 
Vorticity and non-coaxiality in progressive deformations. J. Struct. 
Geol. 2,371-378. 

Passchier, C. W. 1986. Flow in natural shear zones--the consequences 
of spinning flow regimes. Earth Planet. Sci. Left. 77, 70-80. 

Passchier, C. W. 1988. Flow path analysis in shear zones. Geol. Rdsch. 
71,309-318. 

Passchier, C. W. In press. The use of Mohr circles to describe 
non-coaxial flow regimes and resulting deformation in rocks. 
Tectonophysics. 

Passchier, C. W. & Simpson, C. 1986. Porphyroclast systems as 
kinematic indicators. J. Struct. Geol. 8,831-843. 

Platt, J. P. & Vissers, R. L. M. 1980. Extensional structures in 
anisotopic rocks. J. Struct. Geol. 2,397--410. 

Ramsay, J. F. & Huber, M. I. 1983. The Techniques of Modern 
Structural Geology, Vol. 1, Strain Analysis. Academic Press, New 
York. 

Schmid, S. M. & Casey, M. 1986. Complete fabric analysis of some 
commonly observed quartz C-axis patterns In: Mineral and Rock 
Deformation; Laboratory Studies--The Paterson Volume (edited by 
Hobbs, B. E. & Heard, H. C). A G U  Geophys. Monogr. 36, 
263-295. 

Treagus, S. H. 1986. Some applications of the Mohr diagram for 
three-dimensional strain. J. Struct. Geol. 8,819--830. 

Truesdell, C. 1954. The Kinematics of Vorticity. Indiana University 
Press, Bloomington. 

Williams, P. F. & Urai, J. L. In press. Curved vein fibres, an 
alternative explanation. Tectonophysics. 


