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Abstract

The classification of the myriad of small-scale structures that are used in tectonic analysis is presently based on their geometry, which

makes it difficult to discover transitions and groups amongst them. An alternative would be to classify structures according to the flow type by

which they form, but this is difficult. Although most structures form by heterogeneous flow, modelling studies are often focussed on bulk

homogeneous flow, since the mathematical treatment of heterogeneous flow is cumbersome. Also, heterogeneous deformation patterns seem

to occur in as many types as there are small-scale structures.

This paper introduces the use of the geometry of flow perturbations to improve our understanding of heterogeneous flow, and to allow

classification of structures based on kinematics. A flow perturbation is the deviation of a heterogeneous flow pattern from the background

homogeneous flow. Perturbation patterns can be visualised as open or closed loops of vectors, which occur in pairs, rows or groups of four.

They usually cross-cut rheological interfaces, and can be subdivided into those that cross interfaces twice or four times. Most geological

structures belong to the first group, while initiating buckle folds belong to the second group.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Because of the slow progress of deformation in rocks,

structural geology is the only science working with

deforming materials that bases most of its attention on the

final shape of deflected markers, known as deformation

structures. Deformation structures in rocks are permanent

changes in the geometry of older fabric elements such as

layering or intrusive fabrics. They are either studied from a

topical point of view in order to understand their develop-

ment, or used as tools to reconstruct larger scale

deformation processes, up to the scale of orogenesis. In

such reconstructions, the development mechanism for
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particular small-scale structures is used to reconstruct flow

and deformation at a larger scale based on the assumption

that flow close to a small-scale feature is representative of a

larger volume of surrounding material (Wallis, 1992;

Simpson and de Paor, 1993; Beam and Fisher, 1999). An

important problem in structural geology, however, is the

myriad of different shapes that occur in nature. Nearly every

structure is unique in some sense, and classification of

structures is exceedingly difficult. Nevertheless, some sort

of classification is useful if structures are to be used as tools

in geological reconstructions. Many studies have therefore

attempted, with variable success, to subdivide deformation

structures observed in nature into groups with specific labels

such as folds, shear bands, boudins or porphyroclasts

(Passchier and Trouw, 1996). This approach is similar to

classification systems of taxonomy in biology or palaeon-

tology, where it is the shape of an organism that determines

its place in a classification system. However, organisms

with similar shape are not necessarily related, and structures

with similar shape did not necessarily all form in the same

way. In biology, DNA sequencing can now demonstrate the
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Fig. 1. Deformation structures in rocks can form by (a) homogeneous flow,

or (b) heterogeneous flow. Heterogeneous flow can be regarded as (c) the

sum of a homogeneous flow and a flow perturbation pattern.
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relationship between organisms in a more reliable way, but

in geology only an understanding of the progressive

development mechanisms and histories can provide a

reliable classification of related structures. Obviously, this

is not always practical in the field where only final shapes

are visible, but with the growing ability to model structures

in analogue experiments and numerically, classification
Fig. 2. Deformation that is studied at different scales in different

observation volumes is commonly heterogeneous, but usually observation

volumes can be found where flow and deformation are approximately

homogeneous.
systems based on genesis are becoming viable. In this paper

we propose a classification of structures in rocks based on

the geometry of the flow pattern that produces them, rather

than on their final shape. This different point of view could

give as many surprises in geology as DNA-based taxonomy

did in biology.
2. Flow and deformation perturbations

Many analytical studies of deformation in rocks have

been based on the assumption of homogeneous flow such as

pure-, simple- or general shear, which has the same

geometry in any part of a material and at any scale

exceeding that of individual grains (Fig. 1a). Such

homogeneous flow can be considered in terms of either

the velocity gradient or the deformation tensor for kinematic

descriptions, which are mathematically easy to present, and

give satisfactory results. Quite complex steady-state homo-

geneous flow and deformation can be described with just

four constant parameters in two dimensions or nine in three

dimensions, which are valid throughout a certain volume of

rock (e.g. Ramberg, 1975; Passchier, 1988; Tikoff and

Fossen, 1993).

Unfortunately, the concept of homogeneous flow and

deformation is purely theoretical and not ideal for all

materials and scales of observation. In many fluids, the

concept of homogeneous flow and deformation is a good

approximation at the micrometre to metre scale. However,

unlike fluids, the rheology of rocks is notoriously hetero-

geneous and anisotropic on all scales and this induces

heterogeneous flow and deformation (Fig. 1b). In geology,

one tries to overcome this problem by imagining certain

scales of observation where flow and deformation are

approximately homogeneous (Means, 1976; Fig. 2). If the

size of an ‘observation volume’ of material is gradually

increased from micrometre to kilometre scale, several

stages show material behaviour that could be approximately

described as homogeneous. The reason is that at some scales

of observation, deviations from the mean flow patterns are

so small that they can be neglected (Fig. 2). This is the basis

for justifying the application of homogeneous flow models

to deforming rocks.

Some important types of structures do indeed form by

homogeneous deformation in rheologically homogeneous

rocks. Examples are many foliations and lineations, many

deformed fossils and reduction spots, and some types of

folds that form by passive amplification of non-planar

layering (Fig. 1a). These structures are formed by an

interplay between the bulk flow and some pre-existing

shape(s) or marker surface(s) in the rock. Ironically, nearly

all other structures, including the most important ones for

structural geologists such as buckle folds, boudins, shear

bands, shear zones, mullions, mantled porphyroclasts, veins,

fringes and flanking folds (Coelho et al., in press), cannot

form in homogeneous flow and deformation, but need



Fig. 3. Small-scale structures can be subdivided into a few that form by homogeneous flow, without flow perturbations, and a majority that needs flow

perturbations for their development.

1 An example of a predefined heterogeneous background flow is that

developed in a ring shear machine, where the shear strain rate decreases

radially outwards (e.g. Arbaret et al., 2001).
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heterogeneous flow for their development (Fig. 1b). This is a

reflection of rheological heterogeneities during their devel-

opment. Heterogeneous rheology within a volume of rock is

either original, due to variation in mineral or chemical

composition, or induced (and changing) during the defor-

mation process by hardening or softening. Data from a

‘heterogeneous flow stage’, e.g. the flow around a

porphyroclast in a mylonite with an observation volume

of ca. 1 cm3, are then commonly used to infer flow

conditions for the background homogeneous flow on a

scale one to four orders of magnitude larger, e.g. the

observation volume for a mylonite zone of ca. 1 m3 (Fig. 2).

Such ‘upscaling projection’ is the basis of all kinematic

interpretation in structural geology.

Inhomogeneous flow or deformation is difficult to

describe analytically, since the constants of the deformation

tensors must be replaced by functions and strain parameters

have to be obtained by derivation of the deformation

gradient tensor. However, some heterogeneous kinematic

analytical descriptions of rock deformation have been

attempted (e.g. Hobbs and Talbot, 1966; Hobbs, 1971;

Ramsay and Lisle, 2000). Analytical studies that have

attempted to deal with heterogeneous deformation caused

by rheologically inhomogeneous rock volumes (e.g. more

competent clasts or layers in a less competent matrix) are

even less numerous for the simple reason that this is much

more complex mathematically, and needs more parameters

to describe (e.g. Muskhelishvili, 1953; Biot, 1961; Fletcher,

1977; Smith, 1977; Schmid and Podladchikov, 2003).

Commonly the solutions are restricted to infinitesimal

deformation and approximated to first order, although fold

initiation and amplification have been analysed up to third

order (Johnson and Fletcher, 1994) and to finite amplitudes

(Schmalholz and Podladchikov, 2000), with correspond-

ingly complex solutions.

In this paper we have decided to try another approach to
deal with heterogeneous flow or deformation. We consider

the geometry of heterogeneous flow or deformation to be a

vector addition of a homogeneous vector field, and

perturbations to this homogeneity (Fig. 1c). The shape of

these perturbations usually changes with time and develop-

ment of the structure. As in the concept of incremental and

finite deformation in a homogeneous flow, one can imagine

infinitesimal and finite deformation perturbations super-

imposed on a homogeneous background flow or defor-

mation (e.g. Cobbold, 1975; Mancktelow, 1991).

Infinitesimal perturbations will be different at different

times during the deformation process, and the finite

deformation perturbation will be the addition of all these

incremental ones. In this paper, only the instantaneous (or

infinitesimal) perturbation flow field is treated in order to

illustrate the concept. Based on these considerations,

structures in rocks can be basically divided into non-

perturbation induced and perturbation induced structures

(Fig. 3). Flow perturbations occur on many scales, but in

this paper we concentrate on those that occur on the same

scale as the structures studied, in practice on the millimetre

to tens of metres scale.
3. The perturbation flow field

The perturbation flow field is a vector field, involving

both magnitude and direction (Figs. 1c and 4). It is defined

at every point by the actual velocity minus the background

velocity expected for either homogeneous or heterogeneous

flow1 with the imposed boundary conditions. The definition

is instantaneous and can only reflect the boundary
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conditions, geometry of rheological boundaries and rheol-

ogy at any instant. From the spatial gradient in the

perturbation velocity, the perturbation rate of deformation

can also be calculated throughout the model. For linear

rheology (e.g. linear elasticity or viscosity), the total

velocity field is a linear superposition of the background

and perturbation components, which can therefore be

treated independently. This is the basis for analytical

solutions describing, for example, the translation of a

particle through a fluid (Batchelor, 1967) or fold initiation

and growth (Fletcher, 1974, 1977). For the sake of

simplicity and to highlight the principles of the method,

this work only discusses examples of perturbation velocities

where the background deformation induced by the boundary

conditions is homogeneous, and more specifically either

pure or simple shear.

The pattern of a perturbation flow field is determined

only by the geometry of rheological boundaries in the

observed volume of material, and on boundary conditions.

Changes in the magnitude of rheological parameters (e.g.

viscosity) change the magnitude of the perturbation

velocities but not the overall pattern (Batchelor, 1967).

Isolated rheological heterogeneities (e.g. an inclusion as in

Fig. 4) can only cause an isolated perturbation in the

velocity field. The perturbation velocity field must therefore

decrease in magnitude away from the heterogeneity, with

the length scale provided by the size of the heterogeneity

(Fig. 4b), and the vectorial trajectories form open or closed

loops that can approach each other, but cannot cross (Fig.

4c). As the perturbation velocity field pattern depends only

on the geometry of the rheological heterogeneity and the

far-field flow, the system symmetry must also be present in

the perturbation flow, allowing many simple patterns to be

predicted a priori. In general, there will be points of zero

perturbation at the centre of closed loops, analogous to

stagnation points in bulk flow (Ottino, 1989; Passchier and

Sokoutis, 1993), while different loops are separated by

surfaces known as separatrices (Ottino, 1989; Passchier and

Sokoutis, 1993; Fig. 4). Separatrices also join in points of

zero perturbation velocity (e.g. the central point in Fig. 4a–d).

However, it must be emphasized that material points follow

streamlines defined by the total velocity field and not just the

perturbation component. The perturbation flow fields do not

have direct connotations for the movement of particles.
4. Examples of perturbation flow fields for common

structures

4.1. Modelling methods

To investigate the geometry of flow perturbation fields,

numerical experiments were performed using a personally

developed (NM) finite-element code for incompressible

viscous flow. The code uses 7-node triangular elements with

seven internal integration points for the examples with
isolated inclusions and 9-node quadratic elements with nine

internal integration points for the single layer examples, in

each case with linear (3-node) interpolation of pressure and

elimination of pressure at the element level (e.g. Hughes,

2000; Zienkiewicz and Taylor, 2000). Incompressibility

was enforced by Uzawa iteration (Arrow et al., 1958;

Zienkiewicz and Taylor, 2000). Constant strain rate

boundary conditions appropriate to pure or simple shear

were imposed. In the pure shear experiments, the velocity

on the converging boundaries was constrained and the

diverging boundaries were left free. In the simple shear

experiments, the upper and lower boundaries had imposed

velocity constraints, whereas the left and right boundaries

were periodic (i.e. the x velocity of corresponding points on

the left and right boundaries was constrained to be the same,

and the y velocity was set to zero). Patterns, for example,

with circular or elliptical cross-sections were also calculated

analytically (Fig. 4b and c; Muskhelishvili, 1953; Schmid

and Podladchikov, 2003), in part as a check on the finite-

element code. The instantaneous perturbation velocity

patterns were calculated in each case by subtracting a bulk

homogeneous flow appropriate to the boundary conditions

from the observed inhomogeneous flow pattern (Figs. 4–10).

4.2. Isolated inclusions

Perhaps the simplest example of a perturbation velocity

field is that of an isolated cylindrical inclusion (circular in

cross-section) in plane strain. The salient characteristics of a

perturbation velocity field are readily seen in Fig. 4: (1) the

magnitude of the perturbation velocity field decreases away

from the inclusion; (2) the pattern reflects the overall

symmetry of the system (i.e. both inclusion and imposed

background velocity field, in this case pure shear; cf.

Paterson and Weiss, 1961); and (3) the vectorial directions

form open or closed loops, which can be highlighted by

drawing trajectories parallel to the perturbation vectors. If

boundary conditions are the same, changing the sign of the

background velocity field (i.e. from horizontal shortening as

in Fig. 4 to horizontal extension) merely changes the sign of

the perturbation velocity field but the pattern remains the

same. This is obvious in Fig. 4 where switching the

horizontal and vertical axes would have the same effect. As

noted above, changing the magnitude of the rheological

parameters (in this case viscosity) changes the magnitude

but not the form of the perturbation velocity field. Inverting

the viscosity ratio (i.e. from a strong to weak inclusion) also

inverts the direction of the perturbation velocity vectors, but

with the same magnitude (Fig. 4a and d), while perturbation

velocities are obviously zero when the inclusion and the

host material have the same viscosity. Perturbation

velocities along the horizontal (x) and vertical (y) axes are

also vertical and horizontal. The rotation rate of these

directions is therefore the same as the imposed flow, namely

zero, reflecting the fact that particles with circular cross-

section do not rotate in pure shear.



Fig. 4. Perturbation velocity flow fields around an isolated cylindrical particle (circular cross-section) in pure shear. Materials are incompressible linear

viscous, with a viscosity ratio of 50:1. Shortening direction is horizontal. (a) Perturbation flow field for a strong inclusion; (b) contours of the magnitude of the

perturbation velocity normalized against the velocity at the surface of the inclusion for homogeneous flow (i.e. particle radius times the background strain rate);

(c) trajectories of the perturbation flow fields; note that the vertical and horizontal lines correspond to separatrices and the central point where they meet is a

point of zero perturbation flow (and in this case, a true stagnation point of the bulk flow); (d) perturbation flow field for a weak inclusion. The plots of (a) and (d)

are calculated with an incompressible viscous finite-element code; the plots of (b) and (c) are calculated with the analytical solution of Schmid and

Podladchikov (2003). For (a) and (d), the width of the bounding box (with imposed velocity boundary conditions) in the x- and y-directions is 20 times the

circle diameter. For the analytical solution, the boundaries are at infinite distance.
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Fig. 5. Perturbation velocity flow fields around an isolated inclusion in dextral simple shear. Materials are incompressible linear viscous, with a viscosity ratio

of 50:1. Shear direction is horizontal. In (a) and (b) the inclusion has a circular cross-section and the width of the bounding box in the x- and y-directions was 20

and 10 times the circle diameter, respectively. In (c) and (d) the inclusion has a square cross-section and the width of the bounding box in the x- and y-directions

was five times the width of the inclusion. For (a) and (c) the inclusion is strong, in (b) and (d) it is weak.
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Under simple shear (Fig. 5), the perturbation velocity is

very similar but rotated by 458, reflecting the different

orientation of the instantaneous stretching axes (ISA). In

this case, the particle does rotate, due to the rotational

boundary conditions. The background flow causes a vertical

passive line to rotate at the shear strain rate, whereas a

horizontal line parallel to the shear direction does not rotate

at all. A rigid equant particle therefore rotates at a rate equal

to the average of these two extreme values, that is at half the

shear strain rate. As a result, the perturbation velocity is

tangential to the interface in the horizontal and vertical

directions, with a magnitude of half the shear strain rate

times the radius at the interface for a rigid inclusion.
The direction is against the sense of shear in the vertical

direction and with the sense of shear in the horizontal

direction. Similar rules apply for stiff and weak inclusions

subject to simple shear, as shown in Fig. 5. Reversing the

shear sense or inverting the viscosity ratio (weak inclusion,

Fig. 5b) simply reverses the sense of the perturbation

velocity vectors. Provided the same symmetry and average

elongation are maintained, a different detailed shape of the

particle, e.g. a square or hexagonal cross-section instead of

a circular one, makes no difference to the general pattern

(Fig. 5c and d), consistent with the observation that the

instantaneous rotational behaviour of rigid inclusions is not

sensitive to details of shape (Willis, 1977; Arbaret et al.,



Fig. 6. Perturbation velocity flow fields for the weak particles of Fig. 5b and

d after a dextral simple shear of gZ1. Boundary conditions are the same as

in Fig. 5.
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2001). Notice that a change in the aspect ratio does have an

influence on the pattern. The numerical models of Figs. 4

and 5 also illustrate the fact that the point and reflection

symmetries of both the particle and the flow field relative to

the ISA are reflected in the perturbation flow patterns

(Paterson and Weiss, 1961).

In Fig. 6 the perturbation flow fields for elongate weak

particles with initially circular or square cross-sections

sheared to gZ1 are presented. The differences in finite

shape reflect the difference in the form of the initial particle
outlines but the perturbation flow fields are again very

similar, and the same applies to the continued development

history. Examples will be presented below where this is not

the case, and changes in shape of the rheological boundary

with continued deformation eventually lead to very different

patterns.

The consideration of hard and soft isolated inclusions has

some interesting consequences (cf. Treagus and Lan, 2000,

2003, 2004). For example, in pure shear a passive marker

circle deforms into an ellipse. In this case, the bulk flow is

responsible and there are no flow perturbations. If the

inclusion is softer than the matrix, stretching of the ellipse

will be exaggerated; four flow perturbation cells exist which

give the central particle an ‘extra’ deformation of the same

style as the bulk flow (Fig. 4). In the opposite case, for a

particle harder than the matrix, it will become less elliptical

than the bulk strain ellipse; the perturbations work against

the bulk flow. If the particle is rigid, the flow perturbation

can be imagined to exactly balance the bulk flow inside the

particle. Another way of imagining this is by instantaneous

partitioning of homogeneous and perturbation components

into two steps: the particle is deformed to an ellipse by

homogeneous flow, but the perturbation pushes it back into

its original shape.
4.3. Flanking folds

The perturbation flow fields around a weak particle with

an elongate elliptical cross-section (20:1) are given in Fig. 7

for steps in orientation of 22.58. This geometry is

comparable to that considered by Grasemann and Stuwe

(2001) and Grasemann et al. (2003) for the development of

flanking structures around a weak cross-cutting element

such as a shear zone or fault in bulk simple shear. As

discussed above, a hard particle of the same shape would

develop an identical perturbation flow pattern, but with the

opposite sense. Four perturbation cells are still developed

but in contrast to the equant particles, the separatrices are no

longer perpendicular to each other and are unequally

developed (Fig. 7). Comparison of Figs. 5–7 shows that

with increasing ellipticity of an isolated particle, one set of

two cells may decrease in significance at the cost of two

other cells, but all four cells are in general still present.

Based on these considerations, all weak or strong equidi-

mensional and elliptical particles can be regarded as being

associated with four perturbation cells, with transitions

between them, although one pair of cells may be smaller and

less pronounced. This implies that ductile shear zones, weak

cylindrical particles, strong cylindrical particles and hard

lenses are related structures in terms of their flow

perturbations. In geological practice, this links mantled

porphyroclasts, mineral fish, spiral garnets, flanking folds,

shear bands, shear band cleavage, ductile shear zones and

deformed enclaves as related structures.



Fig. 7. Perturbation velocity flow fields in dextral simple shear for a weak particle with viscosity ratio 50:1 and an axial ratio 20:1 at different orientations of the

particle. The angle between particle and a reference axis is increased from a–h in steps of 22.58. The width of the bounding box is 16 times the maximum

dimension of the ellipse in both the x- and y-directions.
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Fig. 7 (continued)
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4.4. Layers

Rocks are commonly layered and shortening and

extension of layering results in mechanical instability, an
associated perturbation velocity field and, with time, the

development of finite deformation structures such as folds,

mullions or boudins (Smith, 1975, 1977). In all these cases,

initial irregularities in the layer surface are amplified into



Fig. 8. Perturbation velocity flow fields for layer parallel shortening or extension with an antiphase sinusoidal variation with wavelength 6.5 times and

amplitude 1/20 of the layer thickness. The width of the model box in the y-direction is initially 24 times the layer thickness and the upper and lower boundaries

are left free. Viscosity ratio is 500:1.
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Fig. 9. Perturbation velocity flow fields after 50% shortening and 100% extension of the initial geometries of Fig. 8.
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Fig. 10. Perturbation velocity flow fields for several stages of single layer buckle folding with viscosity ratio 50:1, wavelength 13 times layer thickness (ca. the

fastest growing or ‘dominant’ wavelength), and initial amplitude 1/20 of layer thickness. The width of the model box in the y-direction is initially 100 times the

layer thickness and the upper and lower boundaries are left free. Double intersection perturbation loops occur at initial stages of buckling, but these eventually

split up into more usual single intersection perturbation loops.
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finite structures as a result of the mechanical instability,

with one particular wavelength (depending on layer

thickness, viscosity contrast and material rheology) ampli-

fying fastest—the so-called dominant wavelength (e.g. Biot,

1961; Fletcher, 1974, 1977; Smith, 1975, 1977; and many

others). In most natural cases, the growth rate of the

dominant wavelength will not be sufficient to completely

swamp the effect of the initial layer irregularities (Abbassi

and Mancktelow, 1990; Mancktelow, 1999, 2001). In detail,

the perturbation flow field will then be unique for every

combination of layer thickness, viscosity contrast, rheology

and initial perturbation distribution. However, the general

characteristics of instability development in layered

material is better highlighted by only considering the

developing dominant wavelength, and this is the approach

followed here.

The initiation of mechanical instability for one end-

member example of a single wavelength interface irregu-

larity, namely an antiphase sinusoidal form, is considered in

Fig. 8. The four possible combinations of shortening or

extension of a strong or weak layer are shown. One

complete wavelength segment is presented although, from

symmetry, half the wavelength would be sufficient. Notice

that, instead of four perturbation cells, we now have an

unlimited number of perturbation cell-pairs along an

infinitely long layer. Changing from extension to shortening

again simply involves a reversal in the perturbation velocity

vector directions. However, patterns are different for weak

and strong layers. The weak layer shows four cells in each

half-wavelength segment bounded at the layer interface and

the central surface, respectively, whereas the strong layer

has only two cells that show reflection symmetry about the

central surface. Of the four potential structures (Fig. 8a–d),

only extension of a strong layer (Fig. 8d) shows a

perturbation velocity field that would amplify the initial

irregularity to produce a recognizable deformation structure

at finite strain (a ‘boudin’). For a weak layer (Fig. 8a and b),

the perturbation velocity at the thickest and thinnest points

on the layer surface is zero and there is no dynamic

amplification. For shortening of a strong layer (Fig. 8c), the

perturbation velocity field actually tends to deamplify the

initial irregularity. The passive background flow will

amplify the initial sinusoidal irregularity in shortening and

deamplify it in extension. In summary, mullions (Fig. 8a)

may develop by passive amplification at high finite strain,

but without any help from dynamic amplification. Extension

of a weak layer (Fig. 8b) will passively deamplify the initial

irregularity. There is no dynamic contribution and therefore

no structure would be expected to develop. Passive and

dynamic effects work against each other in the case of

shortening of an antiphase, sinusoidal layer thickness

variation in a strong layer (Fig. 8c). For extension of a

stronger layer (Fig. 8d), boudins may develop if the

dynamic amplification is sufficient to overcome passive

deamplification.

Fig. 9 shows the same initial set-ups as in Fig. 8 but now
shortened by 50% or extended by 100%. After this

deformation, the geometry of a layer that has been shortened

is obviously very different from one that has been extended.

However, for layers that have been either shortened or

extended, there is no major difference between strong or

weak layers. As a result, except for the expected reversal in

direction, the patterns are practically identical (compare Fig.

9a with c and b with d). These numerical experiments also

show how difficult it is to develop boudins in linear viscous

materials, even when the viscosity contrast is high (500:1 in

the case considered here). This is known from superplastic

behaviour in material science. As the rheological behaviour

approaches that of linear viscosity (typically attained in

fine-grained metals and ceramics, for which diffusion

becomes the rate-controlling process), rods can be pulled

to very high strains (extensions of 1000% or more, e.g.

Poirier, 1985, pp. 204–212) without necking and ‘boudin’

development. Natural boudin development is only possible

for strongly non-linear viscous (Smith, 1977) and/or

pressure-sensitive rheology (Strömgård, 1973).

Fig. 10 considers the classic case of buckle folding due to

shortening of a stronger layer with an initial in-phase

sinusoidal interface deflection. The perturbation velocity

field highlights the changes that occur during progressive

folding. Initially, dynamic amplification involves a rigid

rotation of the limbs, reflected in single circular cells

centred on the inflection points (Fig. 10a). With increasing

amplitude, this single cell becomes more elongate (Fig. 10b)

and as the limb rotates into an orientation of incremental

stretching, three separate cells develop for each fold limb,

the central one of which is still centred on the inflection

point (Fig. 10c). At still higher shortening, the limb region

around the inflection point and adjacent matrix stretches

more-or-less homogeneously with the background flow as

the hinge regions separate. The perturbation flow fields in

the hinge regions become increasingly independent of each

other, with one strong and one weak cell on each side of the

hinge (Fig. 10d). This is a particularly good example in

which the perturbation flow field highlights changes in the

kinematics and dynamics of a process during its progressive

development.
5. Classification of structures by perturbation flow
geometry

Flow perturbation patterns in all experiments are open or

closed loops (or cells) with high perturbation flow velocities

near rheological interfaces, and more reduced flow pertur-

bation velocities in the far-field matrix. In many cases, flow

perturbation loops occur in pairs of different sense

(‘clockwise’ or ‘anti-clockwise’) with separatrix planes in

between.

Fig. 11 is a first attempt to classify structures according to

their flow perturbation geometries. The scheme can be

modified and further expanded as more experimental data
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on more types of structures become available. Flow

perturbation loops basically occur in three types, depending

on the way in which they intersect rheological interfaces.

Most perturbation loops and the separatrices between them

cross a single rheological interface once (in-and-out). These

we name single transection perturbation (SIP)-loops.

Rarely, as in the case of initiating buckle folds, perturbation

loops intersect two rheological interfaces. These we name

double intersection perturbation (DIP)-loops (Fig. 11).

As discussed above, isolated objects such as ductile shear

zones, weak and strong cylindrical particles and hard lenses

are characterised by four open SIP-perturbation loops

arranged in a cross-shape. For effectively circular cross-

sections, the two arms of the cross are perpendicular and the

cells are all equally developed. For increasingly elongate

particles, two cells may come to dominate but all four cells

are still present.

From the patterns in Figs. 8 and 9 discussed above, it is

also clear that mullions, boudins and pinch-and-swell

structures form a single family of related structures with

SIP-loops, connected by transitions in perturbation geome-

try (cf. Smith, 1975, 1977). Basically, they are similar in

shape to the family of isolated particles described before

(Figs. 4 and 5). Buckle folds, however, are interesting

because they show DIP-loops in their initial stages of

development (Fig. 10a), which later split into SIP-loops

centred on the rheological interfaces in the hinge-zones

(Fig. 10d).

One interesting aspect is that in the classification of
Fig. 11. First attempt to classify structures based on the types of flow perturbati

outline of perturbation velocity flow fields of opposite direction. The actual direct

described in boxes, while the associated structures are given in italics. Flanking f
Fig. 11, perturbation geometry is strongly influenced by

particle aspect ratio, and also to a lesser extent by particle

orientation with respect to the instantaneous stretching axes

(ISA) of the homogeneous background flow. Rheology

contrast is of minor significance, and mainly determines the

strength and sign of the perturbation field. In other words, it

is the symmetry of the system that exerts the dominant

control (Paterson andWeiss, 1961). Finally, the geometry of

the homogeneous background flow, i.e. extension, contrac-

tion, sinistral or dextral simple shear, which is normally the

core of classifications of flow and deformation, plays no

significant role in the geometry of flow perturbations, and

therefore has no effect on the classification based on these

perturbations.
6. Discussion

In Fig. 11 we have not yet considered changes in the

shape of flow perturbation patterns with time. In some

structures such as rigid porphyroclasts, flow perturbation

patterns may change little with time, while in others, such as

buckle folds, the patterns are strongly modified with

progressive development of the structure. Further exper-

imental work could therefore allow a more detailed or

alternative subdivision of structures into those with constant

and variable flow perturbation patterns. Variable flow

perturbation patterns could be further subdivided into (1)

those that form around a pre-existing rheological contrast in
ons observed during their development. Grey and black loops indicate the

ion (sinistral or dextral) depends on viscosity contrast. The type of loops is

old terminology according to Coelho et al. (in press).
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the rock, such as a layer or clast that does not change with

time; (2) those that form around objects with a rheological

contrast that changes with time, for example by hardening or

softening; and (3) perturbation patterns that develop in rocks

that initially have a homogeneous rheology but then

undergo local hardening, softening or fracture.

We have concentrated in the current study on ductile

deformation structures without volume change, and associ-

ated flow perturbations. The principle may equally be

applied, however, to brittle deformation. In that case, a

brittle fault or joint will normally coincide with a flow

separatrix, as can be seen from Fig. 7, where an elongate

weak inclusion could be taken as an approximation for a

discrete brittle fracture. In the case of volume change or

erosion, flow perturbation cells in the solid material will be

open and have more complex shapes than discussed here.

In this paper, we have only discussed flow perturbations,

which are by definition instantaneous. As mentioned above,

it might also be interesting to study deformation pertur-

bations, i.e. the perturbations of a structure from the

imaginary results of homogeneous deformation (Man-

cktelow, 1991, fig. 6). For example, it may be instructive

to plot the difference in the position of particles between a

folded layer and the same layer if it had shortened and

thickened homogeneously. At first sight, this would be an

obvious method to classify structures, since deformation

geometries can be observed without the need for exper-

iments. There are, however, some problems with the use of

deformation perturbations for structural classification: (1) it

is commonly difficult to find with certainty a large number

of material points of which the initial position is known; (2)

the large displacement involved in finite deformation

perturbations produces a confuse pattern of overlapping

vectors; and (3) the genetic link to the underlying mechanics

involved in the development of the structure is lost, because

similar finite perturbation geometries may not necessarily

indicate related structures in terms of their development.

Another aspect neglected so far is the 3D geometry of

perturbation patterns. All the structures considered in this

paper have a cylindrical geometry and the third dimension

can therefore be ignored. However, when considering more

complex objects, 3D flow perturbation patterns have to be

modelled and investigated, although the principle will be the

same as outlined above.
7. Conclusions

The perturbation velocity field, which can be readily

calculated for analytical, numerical and analogue models of

deformation structures, is a powerful tool for analysing the

development of these structures. By considering the

perturbation flow, similarities and differences can be

highlighted and this may shed light on the kinematics of

structure growth. The perturbation flow therefore also

provides a rational basis for classification of deformation
structures. Transitions and gradients in perturbation shape

may help to find hidden links between apparently unrelated

structures.
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