How to resist subduction: evidence for large-scale out-of-sequence thrusting during Eocene collision in western Turkey

KLAUS GESSNER1,3, UWE RING1, CEES W. PASSCHIER1 & TALIP GÜNGÖR2

1Institut für Geowissenschaften, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
2Jeoloji Mühendisliği Bölümü, Dokuz Eylül Üniversitesi, 35100 Bornova, Turkey.
3Present address: CSIRO Exploration and Mining, PO Box 1130, Bentley WA 6102, Australia.
(e-mail: klaus@ned.dem.csiro.au)

Abstract: Significant along-strike variations have locked large parts of the Alpine subduction complex in the Eastern Mediterranean in the Eocene, and defined the end of high-pressure accretion in western Turkey. Structural analysis reveals that the Anatolide belt in western Turkey formed under greenschist facies metamorphic conditions in the Eocene when a high-pressure metamorphic fragment of the Adriatic plate (the Cycladic blueschist unit) was thrust onto the imbricated mid-crustal units of the Anatolian microcontinent (the Menderes nappes). The contact between the Cycladic blueschist unit and the Menderes nappes, the Cyclades–Menderes thrust, represents an out-of-sequence ramp which cuts up-section towards the south. The lack of Alpine high-pressure fabrics below the Cyclades–Menderes thrust implies c. 35 km of exhumation of the Cycladic blueschist prior to its Eocene emplacement on top of the Menderes nappes. Structure and geodynamic evolution of the Anatolide belt are in striking contrast to the neighbouring Aegean and contradict the model of a laterally continuous orogenic zone, in which the Anatolide microcontinent is interpreted as an eastern extension of the Adriatic plate.

Keywords: Alpine orogeny, Turkey, Aegean Sea, metamorphism, thrust faults, exhumation.

The Hellenide-Anatolide orogen in the Eastern Mediterranean formed by Cretaceous to recent accretion of continental fragments to the active southern margin of Eurasia (Sengör & Yilmaz 1981; Robertson & Dixon 1984). Tectonic units within the Hellenide-Anatolide orogen are aligned parallel to the present-day Hellenic subduction zone, and have traditionally been regarded as an arcuate arrangement of laterally continuous orogenic belts (e.g. Brunn 1956; Aubouin 1959; Dürr et al. 1978; Jacobshagen et al. 1978). A fundamental assumption of this hypothesis is that the Pelagonian zone (Aubouin 1959), the Cycladic zone and the Menderes Massif (Parejas 1940) can be grouped together as a continuous ‘Median Crystalline Belt’ (Dürr et al. 1978). In this ‘classical’ interpretation the Median Crystalline Belt represents Carboniferous basement and Permo-Mesozoic cover of the Alpine plate (Fig. 1). It has recently been proposed that only the upper levels of the Menderes Massif (the ‘Cycladic blueschist unit’) were correlative with the Cycladic zone, while the lower units were formed by the exotic Menderes nappes (Ring et al. 1999a). The subdivision of these authors will be adapted in this paper, and the term ‘Menderes Massif’ will not be used in a tectonic context.

A striking characteristic of the Hellenides in the Aegean is the southward propagation of nappe emplacement and high-pressure metamorphism. In this paper, it will be shown how this propagation relates to the formation of the Anatolide belt, and that the crucial difference between the Hellenides and the Anatolides is due to along-strike variations in the Alpine subduction complex. In detail, aspects of the tectonic development of the Cycladic zone and the Anatolide belt will be reviewed, followed by a structural study of the Cycladic blueschist unit in western Turkey and the Menderes nappes. It will be shown that the tectonometamorphic differences of both units and the geometry of their thrust contact have significant implications on the timing of collision and exhumation processes, and on the palaeogeography of the eastern Mediterranean.

Overview

The nappe pile in the Aegean and western Turkey

The Hellenides can be subdivided from top (internides) to bottom (externides) into (1) the internal zone, (2) the Vardar–Izmir–Ankara zone, (3) the Lycian Allochthon, (4) the Cycladic zone, and (5) the external Hellenides (Fig. 2). A major difference between the Aegean and western Turkey is that in the latter the Menderes nappes instead of the external Hellenides form the lowermost tectonic unit (Fig. 2).

The internal zone consists of continental fragments of the Eurasion plate, the south-easternmost being the Sakarya continent (Fig. 1), underneath which oceanic crust of Neotethys was subducted during Cretaceous convergence (Sengör & Yilmaz 1981). The related suture is the Vardar–Izmir–Ankara zone (Sengör et al. 1984), parts of which were metamorphosed under blueschist-facies conditions in the Late Cretaceous (Sherlock et al. 1999) (Fig. 2c). The Lycian Allochthon (Collins & Robertson 1997) is a thin-skinned thrust belt, which roots in the Vardar–Izmir–Ankara zone (Collins & Robertson 1997, 1998, 1999). Within the Lycian Allochthon, top-to-the-south displacement occurred from the Late Cretaceous to the Late Miocene (Collins & Robertson 1998, 1999). Parts of the Lycian Allochthon were metamorphosed under incipient high-pressure conditions (Bernoülli et al. 1974; Franz & Okrusch 1992; Oberhansli et al. 2001).
The Cycladic zone consists of continental fragments of the Adriatic plate (Fig. 1) and can be subdivided into three tectonic units (Altherr & Seidel 1977; Avigad et al. 1997; Ring et al. 1999b), which are from structurally highest to lowest: (i) the heterogeneous Cycladic ophiolite nappe consisting of unmetamorphosed to greenschist-facies ophiolitic and sedimentary rocks containing high-grade metamorphic blocks of Jurassic and Cretaceous age. (ii) The Cycladic blueschist unit, which is made up of a high-pressure nappe stack comprising from top to bottom an ophiolitic mélangé, a Permocarboniferous to Mesozoic shelf sequence, and a Carboniferous basement. (iii) The basal unit, which is exposed in at least four tectonic windows (Avigad et al. 1997; Ring et al. 2001a) (Fig. 2) and is likely to be part of the Permian to Palaeogene External Hellenides. Overall the temporal progradation of nappe emplacement and high-pressure metamorphism towards the south mimics the southward retreat of the Hellenic subduction zone.

In contrast to parts of the External Hellenides, the Menderes nappes, which also occur tectonically below the Cycladic zone, do not show Alpine high-pressure metamorphism (Ring et al. 1999a; Okay 2001). Another important difference is that the basement of one of the Menderes nappes (Çine nappe, see below) is of Neooproterozoic Cambrian age (Kröner & Şengör 1990; Hetzel & Reischmann 1996; Hetzel et al. 1998; Loos & Reischmann 1999). This basement preserves deformation fabrics of latest Proterozoic age (the De event of Gessner et al. 2001a; the suffix ‘PA’ stands for pre-Alpine). The absence of Alpine high-pressure metamorphism in the Menderes nappes and the lack of a well-defined subduction zone to the south of western Turkey suggest that subduction ceased after the collision of the exotic Anatolide microcontinent in the Eocene (Hetzel et al. 1995b; Ring et al. 1999a).

Lithology and tectonometamorphic evolution of the Cycladic blueschist unit in the Aegean

Aspects of the tectonometamorphic evolution of the Cycladic blueschist unit in the Aegean are reviewed here to allow comparisons with the development of the Cycladic blueschist unit in western Turkey. According to Ring et al. (1999b) the Cycladic blueschist unit on Samos Island consists of three high-pressure nappes, which are from top to bottom: (1) the Selçuk nappe (ophiolitic mélange), (2) the Ampelos nappe (Permocarboniferous to Mesozoic passive margin sequence), and (3) the Agios Nikolaos nappe (Carboniferous basement).

The Selçuk nappe contains blocks of metagabbro in a matrix of serpentinite and garnet–mica schist. Ring et al. (1999b) argued that the Selçuk nappe was correlative with the ophiolitic mélanges on the Cycladic islands of Syros and Tinos (Okrusch & Bröcker 1990; Bröcker & Enders 1999), where a rock unit similar in lithology and tectonic position is exposed. High-pressure \(P-T \) conditions are in the range of 10–15 kbar and 400–500°C (Ring et al. 1999b).

The Ampelos nappe and correlative tectonic units across the entire Cyclades consist of quartzite, metapelite and metabasite overlain by marble containing metabauxite (e.g. Dürr et al. 1978). This succession has been interpreted as a former passive continental margin sequence (Altherr & Seidel 1977). The underlying Agios Nikolaos nappe contains marble and garnet–mica schist intruded by Carboniferous orthogneiss, and represents part of the former basement of the shelf sequence. \(P-T \)
Tectonometamorphic units subject to high-pressure metamorphism

<table>
<thead>
<tr>
<th>Tectonometamorphic unit</th>
<th>Epoch</th>
<th>Time [Ma]</th>
<th>P/T [kbar/°C]</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vardar-Izmir-Ankara Zone</td>
<td>Cretaceous</td>
<td>~80</td>
<td>20 / 430</td>
<td>Sherlock et al. (1999)</td>
</tr>
<tr>
<td>Cycladic zone (CZ)</td>
<td></td>
<td>75-65</td>
<td>~12-19 / 450-550</td>
<td>Altherr et al. (1979); Wijbrans & McDougall (1986); Wijbrans et al. (1988; 1990); Bröcker et al. (1993); Bröcker & Enders (1999)</td>
</tr>
<tr>
<td>External Hellenides in tectonic windows in CZ</td>
<td></td>
<td>24-20</td>
<td>8.10 / 400</td>
<td>Seidel et al. (1982); Ring et al. (2001)</td>
</tr>
</tbody>
</table>
conditions of the shelf/basement unit across the entire Cycladic zone are of the order of 12–19 kbar and 450–550°C (e.g., Oktrusch & Bröcker 1990; Will et al. 1998).

The basal unit below the Cycladic blueschist unit largely consists of marbles capped by post-middle Eocene metaflysch. The basal unit underwent Oligocene to Miocene high-pressure metamorphism (Avigad et al. 2001), which reached about 8–10 kbar and 350–400°C (Avigad et al. 1997; Ring et al. 1999b). A subsequent Barrovian metamorphism overprinted all high-pressure units and reached greenschist-to-amphibolite-facies conditions.

Age data for high-pressure metamorphism show a consistent pattern across the Aegean. Zircons, which had overgrown high-pressure minerals in the ophiolitic mélanges of Syros and Tinos were dated by the U–Pb method at 78 Ma and 63–61 Ma (Bröcker & Enders 1999). High-pressure metamorphism in the underlying shelf/basement unit is usually placed into the Eocene (53–40 Ma) and cooling during decompression below 350–400°C took place between 40 and 35 Ma (e.g., K/Ar, 40Ar/39Ar, and Rb–Sr white mica ages of Altherr et al. 1979; Maluski et al. 1987 and Bröcker et al. 1993). The Barroviantype overprint occurred at about 25–15 Ma (e.g. Altherr et al. 1979, 1982; Wijbrans & McDougall 1986, 1988; Wijbrans et al. 1990; Bröcker et al. 1993). High-pressure rocks of the basal unit date from c. 40 to 35 Ma in the Olympic window (Schermer et al. 1990), from 24 to 21 Ma on Evia and Samos (Ring et al. 2001) and 24 to 20 Ma in Crete (Seidel et al. 1982; Thomson et al. 1999).

The tectonometamorphic evolution of the Cycladic blueschist unit in the Aegean involved structures formed during prograde high-pressure metamorphism. The structures young structurally downwards and were poikiloblastically overgrown by glaucophane, chloritoid and kyanite (Lister & Raouzaios 1996 for Sifnos Island; Ring et al. 1999b for Samos Island). During subsequent decompression, thrusting of the Cycladic blueschist unit onto the basal unit was associated with moderate high-pressure metamorphism in the latter (Avigad et al. 1997; Ring et al. 1999b; Ring et al. 2001). Succeeding middle-Oligocene to Recent crustal-scale extension occurred before, during and after the Barrovian metamorphic event. Extension is manifest by greenschist-facies shear zones and brittle normal faults, which are inferred to represent different generations of detachment systems (Forster & Lister 1999; Ring et al. 2001).

The exhumation of the Cycladic blueschist unit is generally attributed to middle Oligocene normal faulting caused by rollback of the subducting Hellenic slab (e.g. Lister et al. 1984; Buick 1991; Raouzaios et al. 1996). Avigad et al. (1997) and Ring et al. (1999b), however, argued that on the islands of Evia and Samos up to 30–40 km of the exhumation of the Cycladic blueschist unit occurred before the middle Oligocene.

Lithology and tectonometamorphic evolution of the Menderes nappes

Three Alpine deformation events, abbreviated D_{A3}–D_{A5} (suffix ‘A’ indicates an Alpine age), have been recognized in the Menderes nappes (the Alpine deformation events D_{A1} and D_{A2} are only found in the Cycladic blueschist unit, see below). Some of the Menderes nappes were affected by a pre-Alpine event (D_{PA}, Fig. 3) (Gessner et al. 2001). The Menderes nappes consist from top to bottom of (1) the Selimiye nappe, (2) the Çine nappe, (3) the Bozdag nappe and (4) the Bayindır nappe (Ring et al. 1999a; Gessner et al. 2001a) (Figs 4 and 5).

The Selimiye nappe contains a metasedimentary sequence, which had overgrown high-pressure minerals in the ophiolitic mélanges of Syros and Tinos. It is characterized by a distinct amphibolite-facies assemblage of amphibolite to granulite-facies metamorphism and related structures were overgrown by garnet at temperatures >450°C (Hetzl & Reischmann 1996). Hetzel & Reischmann (1996) showed that 40Ar/39Ar muscovite ages of 43–37 Ma record slow cooling below 350–400°C (assumed closure temperature for Ar diffusion in muscovite) after D_{A3} and after garnet growth.

The Çine and Bozdag nappes are characterized by a distinct overprinting sequence of ductile fabrics. The structurally higher Çine nappe consists of amphibolite to granulite-facies
ortho- and paragneiss with intercalated metabasite (Dora et al. 1995; Lackmann 1997), while the Bozdag nappe is composed of amphibolite-facies garnet-mica schist and metabasite. Gessner et al. (2001) gave geochronological evidence that the D_{PA} event in the Bozdag and Çine nappes occurred during amphibolite-facies metamorphism at c. 550 Ma and caused top-to-the-NE shear. D_{PA} was overprinted by a D_{A3} greenschist-facies tectonometamorphic event. The corresponding S_{A3} foliation crosscuts S_{PA} and produced a variably spaced shear-band foliation and a well-defined stretching lineation associated with top-to-the-south kinematic indicators in both nappes and in Triassic metagranite (cf. Fig. 4) (Gessner et al. 2001a). Exact P–T conditions for Alpine greenschist-facies metamorphism during D_{A3} are unknown.

The Bayındır nappe at the base contains shelf sediments of inferred Permo-Carboniferous age (Osman Candan pers. comm. 1998), which were metamorphosed under lower greenschist-facies conditions at c. 37 Ma (Lips et al. 2001). The absence of biotite in rocks of suitable bulk composition suggests temperatures \leq c. 400°C (Yardley 1989). The Bayındır nappe was deformed by the synmetamorphic D_{A3} event, which is the first deformation event in the Bayındır nappe. The corresponding S_{A3} foliation is penetrative and associated with a fine-grained N-trending stretching lineation (L_{A3}) (Fig. 6b). L_{A3} is expressed by stretched quartz, albite and chlorite aggregates and aligned tourmaline. In the structurally highest parts of the Bayındır nappe north of Aydın, D_{A3} ductile shear bands and sigma-type objects (Passchier & Simpson 1986) indicate a top-to-the-south shear sense. However, north of Bozdag Mountain, mylonite that formed during the intrusion of the middle Miocene Turgutlu and Salıhi granodiorites (Fig. 4), shows consistent top-to-the-north shear sense indicators associated with ductile extensional deformation (Hetzel et al. 1995b). Because the structures north of Bozdag Mountain formed in the middle Miocene, they are about 15–20 million years younger than the D_{A3} fabrics, which formed during greenschist-facies metamorphism at c.37 Ma (Lips et al. 2001). Therefore, the structures north of Bozdag Mountain are likely to represent a separate D_{A4} ductile extensional event.

Late Alpine brittle extension (D_{A4}) is expressed by normal-fault systems of Miocene to Recent age (Cohen et al. 1995; Hetzel et al. 1995a; Emre & Şözbilir 1997). Since the Pliocene, two opposite-facing normal-fault systems, the Kuzeý detachment in the north and the Günüey detachment in the south (Ring et al. 1999a), have evolved into rolling hinges and have produced the synclinal structure of the Central Menderes...
metamorphic core complex (Gessner et al. 2001b) (Figs 4 and 5).

Overall, this summary reveals two important aspects: (1) there is no evidence for Alpine high-pressure metamorphism in the Menderes nappes and (2) the available, albeit scarce data suggest that grade and age of metamorphism associated with DA₃ decrease structurally downward. Temperatures in the Selimiye nappe were >450°C and occurred before 43–37 Ma (Hetzel & Reischmann 1996), whereas in the Bayındır nappe temperatures barely reached 400°C and occurred later at c. 37 Ma (Lips et al. 2001).

The Cycladic blueschist unit in western Turkey

Lithology and metamorphism

In western Turkey the Cycladic blueschist unit is made up by the Selçuk mélange and the underlying Dilek nappe (Erdogan & Güngör 1992; Candan et al. 1997; Güngör 1998; Ring et al. 1999a). The Selçuk mélange consists of blocks of metabasalt and metabauxite-bearing marble, which are surrounded by a matrix of serpentine and garnet-mica schist. The Dilek nappe is a metamorphosed Permo-Mesozoic shelf sequence, which includes a quartzite conglomerate with interlayered kyanite-chloritoid schist, metabasite, phyllite and marble containing metabauxite. Deposition age of the marble ranges from late Triassic through middle Palaeocene (Dürr et al. 1978; Özer et al. 2001). The passive-margin sequence is overlain by lower to middle Palaeocene flysch (Özer et al. 2001). The Selçuk mélange correlates with the Selçuk nappe; the Dilek nappe is correlative with the Ampelos nappe in Samos (Candan et al. 1997; Ring et al. 1999a). No Carboniferous basement is exposed below the Dilek nappe in western Turkey.

Candan et al. (1997) reported P–T conditions of >10 kbar and <470°C for high-pressure metamorphism in the Dilek nappe, which approximates the c. 15 kbar and 500°C estimated for the Ampelos nappe on Samos (Will et al. 1998). ⁴⁰Ar/³⁹Ar ages for phengite were interpreted to date high-pressure metamorphism at c. 40 Ma in the Dilek nappe (Oberhänsli et al. 1998). ⁴⁰Ar/³⁹Ar work by Ring et al. (unpublished data) on Samos Island suggests that ages of c. 37–40 Ma reflect phengite recrystallization during a high-pressure deformation event, which post-dated the peak of high-pressure metamorphism.

Fig. 5. Cross sections A–A' to G–G' (position of sections given in Fig. 4). Section A–A' shows that Cyclades–Menderes thrust cuts up-section towards the south in direction of tectonic transport. For geometric viability section planes are oriented parallel to mean orientation of L₃. Trace of foliation is projected into section plane and used to infer geometry of sub-surface structures.
Deformation history

Given the Late Cretaceous fossil evidence in the Dilek nappe, deformation events in the Cycladic blueschist unit in western Turkey must be of Alpine age, and will accordingly be abbreviated D_A1, D_A2, and D_A3. D_A1 fabric elements occur exclusively as microscopic relics in the Dilek nappe; mesoscopic D_A2 and D_A3 fabrics are present in both the Selçuk mélangé and the Dilek nappe.

D_A1 is limited to the internal foliation S_A1, in millimetre- to centimetre-sized chloritoid and kyanite porphyroclasts in the Dilek nappe (Fig. 7a–c). In some porphyroclasts, a diffuse opaque banding oriented at a small angle to S_A1 may represent a sedimentary or a pre-D_A1 deformation fabric (Fig. 7b).

A second foliation S_A2 developed heterogeneously in rocks of the Selçuk mélangé. Serpentinite and metapelite display a penetrative foliation, which is associated with a well-defined
NE- to east-trending stretching lineation. Some metabasic and ultrabasic lithologies occur as massive, largely unfoliated blocks. In the Dilek nappe, DA2 fabrics are best preserved in marble, quartzite and kyanite-chloritoid schist, whereas in phyllite only relics of DA2 occur. In quartzite and marble, the arrangement of quartz, calcite, white mica and chlorite defines a pervasive SA2 foliation parallel to lithological layering. In kyanite-chloritoid schist, SA2 is the dominant foliation, which is expressed by the preferred orientation of white mica and flattened quartz. On SA2, a stretching lineation LA2 is expressed by elongated quartz pebbles and quartz-fibre aggregates in quartzite, kyanite-chloritoid schist and phyllite and by elongated aggregates of white mica in marble. Stretched LA2 quartz-rods commonly occur as folded rods or in microlithons between later SA2 shear bands. Locally, kyanite laths, epidote and blue amphibole are aligned subparallel to LA2. Plane polarized light field of view is 1.8 × 2.7 mm.

Fig. 7. Relation between foliations SA1 and SA2 and the inferred sense of shear in kyanite-chloritoid schist intercalations in quartzite conglomerate of the Dilek nappe. Mineral abbreviations: ky, kyanite; cld, chloritoid. Location of outcrop: 37°54.24N, 027°21.92E. (a) Chloritoid σ-type porphyroclast (sensu Passchier & Simpson 1986) with the internal foliation SA1 oriented at a high angle to SA2 in the matrix. Notice that crenulation of opaque banding is indicated by arrow. Sense of shear is top-to-the-NE. Plane polarized light, field of view is 13 × 18 mm. (b) Chloritoid porphyroclast with curved inclusion trails illustrating angular relationship between pre-SA1 opaque banding, internal foliation SA1, and foliation SA2 in matrix. Sense of shear is top-to-the-NE. Plane polarized light, field of view is 9 × 13.5 mm. (c) Kyanite porphyroclast with σ-type geometry indicating top-to-the-NE sense of shear. Field of view is 1.8 × 2.7 mm.

Fig. 8. Cartoon illustrating different regional stretching directions during (a) DA2 and (b) DA3 defined by mean orientations of LA2 and LA3; notice the DA3 relics in kyanite-chloritoid schist layers within lenses of quartz conglomerate.
The original orientation of L_{A2} can therefore be assumed to have been about NE–SW. Shear sense associated with D_{A2} is not obvious in the outcrops, but a consistent top-to-the-NE sense of shear can be detected at the microscopic scale in kyanite–chloritoid schists. These contain /afii9846/shaped objects made up of chloritoid and kyanite porphyroclasts with strain shadows containing recrystallized quartz (Fig. 7a, c). The asymmetries displayed by the external and internal foliations of kyanite and chloritoid porphyroclasts can be explained by two kinematic models which yield opposite shear sense (Passchier & Trouw 1996, Fig. 7.34a) (Fig. 9a and b). In the first model (Fig. 9a), the asymmetries are caused by dextral (i.e. top-to-the-SW in our specific case) rotation of the clast with respect to the flow eigenvectors and the external foliation. In the second model (Fig. 9b), the external foliation rotates sinistrally (i.e. top-to-the-NE) with respect to the flow eigenvectors, while the clast is rotating little or not at all because it is coupled with the strain shadows. The latter model applies to the kyanite and chloritoid porphyroclasts described here, because of the asymmetric, stair-stepping shape of the strain shadows. Moreover, the top-to-the-NE displacement along shear bands in the matrix independently point to the same conclusion.

The contact between the Selçuk mélangé and the Dilek nappe is exposed west of Tire. There, garnet–mica schist of the Selçuk mélangé overlies kyanite-bearing calc schist of the Dilek nappe. At the contact, D_{A2} structures are pervasive. S_{A2} layering is parallel to the contact and is associated with NE-trending L_{A2}, defined by stretched calcite–mica aggregates and up to 30 mm long kyanite laths.
The Cyclades–Menderes thrust

The Cyclades–Menderes thrust cuts through several nappes of the underlying Menderes nappes pile (Figs 4 and 5). In the Selçuk–Tire region, the Cyclades–Menderes thrust separates the Dilek nappe from the Bozdag nappe. East of Ödemiş, the Dilek nappe overlies para- and orthogneiss of the Çine nappe. South of Selimiye, the Cyclades–Menderes thrust is obscured by a series of imbrications, but most likely separates the Dilek nappe from the Selimiye nappe.

The Cyclades–Menderes thrust has been studied in detail in the Selçuk–Tire region, where it is well exposed along a ridge crest NW of Yemisler (Fig. 12). There, the base of the Dilek nappe consists of quartzite and marble, which make up the twin peaks Ballikkayas Tepe and Bozkaya Tepesi. The southern slope of the ridge consists of garnet-mica schist and amphibolite of the Bozdag nappe in the footwall of the Cyclades–Menderes thrust. South of Yemisler, amphibolite-facies D_{PA} structures dominate the fabric in the Bozdag nappe. The S_{PA} foliation is expressed by flattened potassium feldspar and quartz and by preferred orientation of white mica and biotite. S_{PA} is associated with a NE-trending L_{PA} stretching lineation made up by elongated biotite-white mica and quartz-potassium feldspar aggregates. Shear bands indicate a top-to-the-NE sense of shear. In a several hundred metres thick section north of the village of Yemisler, the amphibolite-facies D_{PA} structures in the Bozdag nappe are progressively destroyed within a greenschist-facies shear zone (Fig. 13a, b). Overprinting criteria, style and metamorphic grade of the foliation and fold axes, as well as the orientation of the stretching lineation (cf. Fig. 11) and associated kinematic indicators allow the correlation of these greenschist-facies structures with D_{PA} structures in the overlying Dilek nappe.

Interpretation of deformation–metamorphism–timing relationships

D_{A1} and D_{A2}

Chloritoid and kyanite form a peak high-pressure assemblage in the Ampelos nappe in Samos (Will et al. 1998) and the correlative Dilek nappe in western Turkey. The temporal relation between the formation of S_{A1} and S_{A2} and the growth of chloritoid and kyanite reveals aspects of the tectonometamorphic history of the Dilek nappe during high-pressure metamorphism. An interpretative sequence of the relationship between the development of structures and mineral growth is shown in Figure 14a–d. Growth of chloritoid and kyanite porphyroblasts occurred after the formation of S_{A1} and overlapped with the onset of D_{A3} structures. Early during D_{A2}, chloritoid and kyanite ceased to grow (Fig. 14c), which makes a relation of D_{A3} to decompression likely. 40Ar/39Ar phengite ages obtained by Ring et al. (unpublished) for Samos Island suggest an age of c. 40 Ma for D_{A2}.

D_{A3}

Deformation–metamorphism relations during D_{A3} are complex and heterogeneous. In the Selimiye nappe, Hetzel & Reischmann (1996) reported growth of garnet (i.e. temperatures exceeding 450°C) after the formation of the D_{A3} Selimiye shear zone. Accordingly, 40Ar/39Ar white-mica ages from the Selimiye shear zone were interpreted to date cooling after shearing (Hetzel & Reischmann 1996). In the Bayındır nappe at the base of the Menderes nappes, D_{A3} fabrics formed at peak-metamorphic temperatures of ≤400°C (Fig. 3). Hence, the 40Ar/39Ar white-mica ages of Lips (2001) closely date D_{A3} in the Bayındır nappe. As suggested above, downward propagation of D_{A3} thrusting was associated with decreasing temperatures.

Deformation–metamorphism relations across the Cyclades–Menderes thrust indicate that the breakdown of garnet and biotite to chlorite in the Bozdag nappe at temperatures ≤600°C (Yardley 1989) occurred during D_{A3} mylonitization. As temperatures during deformation along the Cyclades–Menderes thrust appear to have been at least 50°C lower than in the Selimiye shear zone and the inverted metamorphic gradient in the Menderes nappes pile may be older than the Cyclades–Menderes thrust. It therefore appears reasonable to regard the Cyclades–Menderes thrust as a late D_{A1} structure. In concert with geometric constraints (Figs 5 and 15), the age data suggest that the emplacement of the Cycladic blueschist unit was by out-of-sequence thrusting.

Discussion

Tectonic implications

Detailed structural work across the contact of the Dilek nappe with the underlying Bozdag nappe reveals that this contact is a
late D\textsubscript{A3} greenschist-facies shear zone, the Cyclades–Menderes thrust, along which the Cycladic blueschist unit was emplaced on top of the Menderes nappes by out-of-sequence thrusting. Significant differences in tectonometamorphic history of the hanging wall and footwall prior to movement along the Cyclades–Menderes thrust imply large displacements along the latter. In the Cycladic blueschist, the Cyclades–Menderes thrust overprinted a two-phase Alpine high-pressure history; in the footwall, the Cyclades–Menderes thrust crosscuts pre-Alpine structures. During mylonitization along the Cyclades–Menderes thrust the temperature was relatively low at least in the upper portion of the Menderes nappe pile, if compared to the temperature at which D\textsubscript{A3} fabrics formed in the Selimiye nappe. This suggests that the Menderes nappes had been assembled early during D\textsubscript{A3}, before the Cycladic blueschist unit was emplaced.

The reason for proposing that D\textsubscript{A3} and the associated Cyclades–Menderes thrust resulted from crustal shortening is that the Cycladic blueschist unit ramped upwards relative to the Earth’s surface in the direction of D\textsubscript{A3} transport. As illustrated in Figure 5, the Cyclades–Menderes thrust cuts up-section through the Menderes nappe pile, which was assembled during an earlier stage of D\textsubscript{A3}. Within the Menderes nappes, the inverted metamorphic gradient also suggests crustal shortening. Even if the original dip of the Menderes nappe contacts had been subhorizontal, the Cyclades–Menderes thrust still would have had to be somewhat steeper in order to cut up-section in the direction of transport. This geometry is displayed in Figure 15, which illustrates the proposed thrust sequence and the thermochronological data. The mylonitic rocks in the Selimiye shear zone cooled below 350–400°C between 43 and 37 Ma (Hetzel & Reischmann 1996) (thrust 5 in Fig. 15). D\textsubscript{A3} thrusting in the Menderes nappes progressed structurally downwards and affected the Bayındır nappe at c.37 Ma (Lips 2001) (thrusts 6 and 7 in Fig. 15). If this interpretation is correct, phengite \(^{40}\text{Ar}/^{39}\text{Ar} \) ages of 40 Ma reported by Oberhänsli \textit{et al.} (1998) from the Dilek nappe would overlap with the cooling ages below the Cyclades–Menderes thrust. This implies that greenschist-facies displacement of the Cycladic blueschist unit along the
The observation that the Cycladic blueschist unit sits on top of the Menderes nappes has also implications for the Lycian Allochthon above the Cycladic blueschist unit. Because orogenic development progressed structurally downward, high-pressure metamorphism in the Lycian Allochthon should be older than that in the Cycladic blueschist unit (i.e. pre 40 Ma). Such an inference fits well into the recently proposed tectonic model for the Lycian Allochthon by Collins & Robertson (1998, 1999). However, the tectonic position of the Lycian Allochthon above the ophiolitic Selçuk mélange implies that the lower units of the Lycian Allochthon were either deposited on a promontory of Adsia or Sakarya (‘Lycia’ in Fig. 16), or on a separate continental fragment rather than being part of Anatolia, as is generally assumed (cf. Fig. 1) (Sengör & Yılmaz 1981; Sengör et al. 1984; Collins & Robertson 1998).

Exhumation of the Cycladic blueschist unit

The overgrowth of S_A by a blueschist-facies mineral assemblage suggests that D_A occurred during prograde high-pressure metamorphism and is probably related to nappe stacking in the Cycladic blueschist unit (see Lister & Raouzaios (1996) for Sifnos Island and Ring et al. (1999b) for Samos Island). The subsequent D_A event occurred during initial decompression, i.e., exhumation, and may have reactivated the nappe contact of the Dilek nappe and the Selçuk mélange. If the age of 40 Ma produced by Oberhänslil et al. (1998) represents phengite crystallization, the Cycladic blueschist unit in Turkey must have been rapidly exhumed by c. 35 km before its greenschist-facies emplacement onto the Menderes nappes during late D_A at about 37 Ma (Lips et al. 2001). How this pronounced exhumation was accomplished is largely unknown. Avigad et al. (1997; fig. 13) inferred an Oligocene extensional event for Tinós; Ring et al. (1999b) estimated 30–40 km of Eocene to early Oligocene exhumation of the Cycladic blueschist unit by vertical ductile thinning and erosion for Samos.

There are two possible tectonic interpretations of D_A, top-to-the-NE shear. (1) D_A is related to back-thrusting of the Cycladic blueschist unit onto its hinterland due to the overall continental architecture of Anatolia was different from that of easternmost Adria. While the crust of the latter was thinned and maybe even oceanic (Pindos Basin), and had probably been easier to subduct than the crust of Anatolia there is no indication that the crust of Anatolia was thinned at all before entering the subduction zone; it therefore successfully resisted deep subduction (Fig. 16). Wijbrans & McDougall (1988) made a similar proposition by suggesting that the Cycladic zone had formerly been a collage of small fragments of easily subductable continental crust. We speculate that accretion of Anatolia caused early D_A thrusting in the upper Menderes nappes (thrusts 5 and 6 in Fig. 15). Accretion of the Bayyndr nappe may have caused a change in the geometry of the orogenic wedge, hence triggering additional shortening, back-stepping of thrusting towards the hinterland and out-of-sequence emplacement of the Cycladic blueschist unit onto the Menderes nappes. This model allows simultaneous in-sequence motion of the Bozdag nappe onto the Bayyndr nappe and out-of-sequence movement at the Cyclades–Menderes thrust. Given the scarce thermochronological data, the proposed thrust sequence remains speculative but provides a testable working hypothesis.

The observation that the Cycladic blueschist unit sits on top of the Menderes nappes has also implications for the Lycian Allochthon above the Cycladic blueschist unit. Because orogenic development progressed structurally downward, high-pressure metamorphism in the Lycian Allochthon should be older than that in the Cycladic blueschist unit (i.e. pre 40 Ma). Such an inference fits well into the recently proposed tectonic model for the Lycian Allochthon by Collins & Robertson (1998, 1999). However, the tectonic position of the Lycian Allochthon above the ophiolitic Selçuk mélange implies that the lower units of the Lycian Allochthon were either deposited on a promontory of Adsia or Sakarya (‘Lycia’ in Fig. 16), or on a separate continental fragment rather than being part of Anatolia, as is generally assumed (cf. Fig. 1) (Sengör & Yılmaz 1981; Sengör et al. 1984; Collins & Robertson 1998).

Exhumation of the Cycladic blueschist unit

The overgrowth of S_A by a blueschist-facies mineral assemblage suggests that D_A occurred during prograde high-pressure metamorphism and is probably related to nappe stacking in the Cycladic blueschist unit (see Lister & Raouzaios (1996) for Sifnos Island and Ring et al. (1999b) for Samos Island). The subsequent D_A event occurred during initial decompression, i.e., exhumation, and may have reactivated the nappe contact of the Dilek nappe and the Selçuk mélange. If the age of 40 Ma produced by Oberhänslil et al. (1998) represents phengite crystallization, the Cycladic blueschist unit in Turkey must have been rapidly exhumed by c. 35 km before its greenschist-facies emplacement onto the Menderes nappes during late D_A at about 37 Ma (Lips et al. 2001). How this pronounced exhumation was accomplished is largely unknown. Avigad et al. (1997; fig. 13) inferred an Oligocene extensional event for Tinós; Ring et al. (1999b) estimated 30–40 km of Eocene to early Oligocene exhumation of the Cycladic blueschist unit by vertical ductile thinning and erosion for Samos.

There are two possible tectonic interpretations of D_A, top-to-the-NE shear. (1) D_A is related to back-thrusting of the Cycladic blueschist unit onto its hinterland due to the overall continental architecture of Anatolia was different from that of easternmost Adria. While the crust of the latter was thinned and maybe even oceanic (Pindos Basin), and had probably been easier to subduct than the crust of Anatolia there is no indication that the crust of Anatolia was thinned at all before entering the subduction zone; it therefore successfully resisted deep subduction (Fig. 16). Wijbrans & McDougall (1988) made a similar proposition by suggesting that the Cycladic zone had formerly been a collage of small fragments of easily subductable continental crust. We speculate that accretion of Anatolia caused early D_A thrusting in the upper Menderes nappes (thrusts 5 and 6 in Fig. 15). Accretion of the Bayyndr nappe may have caused a change in the geometry of the orogenic wedge, hence triggering additional shortening, back-stepping of thrusting towards the hinterland and out-of-sequence emplacement of the Cycladic blueschist unit onto the Menderes nappes. This model allows simultaneous in-sequence motion of the Bozdag nappe onto the Bayyndr nappe and out-of-sequence movement at the Cyclades–Menderes thrust. Given the scarce thermochronological data, the proposed thrust sequence remains speculative but provides a testable working hypothesis.

The observation that the Cycladic blueschist unit sits on top of the Menderes nappes has also implications for the Lycian Allochthon above the Cycladic blueschist unit. Because orogenic development progressed structurally downward, high-pressure metamorphism in the Lycian Allochthon should be older than that in the Cycladic blueschist unit (i.e. pre 40 Ma). Such an inference fits well into the recently proposed tectonic model for the Lycian Allochthon by Collins & Robertson (1998, 1999). However, the tectonic position of the Lycian Allochthon above the ophiolitic Selçuk mélange implies that the lower units of the Lycian Allochthon were either deposited on a promontory of Adsia or Sakarya (‘Lycia’ in Fig. 16), or on a separate continental fragment rather than being part of Anatolia, as is generally assumed (cf. Fig. 1) (Sengör & Yılmaz 1981; Sengör et al. 1984; Collins & Robertson 1998).
development of topographic gradients in the accretionary wedge (e.g., Willett et al. 1993). Accordingly, S_{A2} should have originally dipped towards the SW, but pervasive D_{A3} shearing may have rotated S_{A2} into subparallelism with the north-dipping penetrative S_{A3} foliation. The c.35 km of exhumation would then be due to vertical ductile thinning and erosion. (2) D_{A2} is related to normal faulting, which aided exhumation of the Cycloidal blueschist unit during D_{A3} in the Eocene. An initially high angle between S_{A1} and the instantaneous stretching axis of D_{A2} can be inferred from S_{A1} and S_{A2} in those
porphyroclasts which retained their initial position between the strain shadows during shearing (Fig. 9). The high angle between S_{A1} and S_{A2} may reflect a pronounced change of the flow field, i.e., a strain reversal, and would lend strong support into an extensional interpretation of D_{A2}. If D_{A2} reworked the contact between the Dilek nappe and the Selçuk melange, the Dilek nappe should have decompressed faster in the Eocene to-the-south greenschist-facies DA3 event. A subsequent top-to-the-NE shearing. A subsequent top‐to-the-south thrusting of the Cycladic blueschist unit onto the Menderes nappes during greenschist-facies metamorphism. The onset of DA2 occurred into an extensional interpretation of DA2. If DA2 reworked the high-pressure mineral assemblage. The prograde Alpine DA1 fabric, which was overgrown by a Cycladic blueschist unit. The Cycladic blueschist unit displays that the Menderes nappes are the eastern continuation of the Cycladic blueschist unit. The Cycladic blueschist unit displays a prograde Alpine D_{A1} fabric, which was overgrown by a high-pressure mineral assemblage. The onset of D_{A2} occurred during initial decomposition after this high-pressure event and is associated with top-to-the-NE shearing. A subsequent top-to-the-south greenschist-facies D_{A3} event affected the Cycladic blueschist unit and the Menderes nappes together. Late during D_{A3} the contact between the Cycladic blueschist unit and the Menderes nappes, the Cyclades–Menderes thrust, formed. The Cyclades–Menderes thrust defines an out-of-sequence ramp structure, which cuts up-section through Menderes nappes towards the south. In the Cycladic blueschist unit, late D_{A3} fabrics associated with the Cyclades-Menderes thrust crosscut high-pressure D_{A2} structures. In the footwall, D_{PA} structures in the Bozdag nappe were deformed by the Cyclades–Menderes thrust. The Cycladic blueschist unit was exhumed by c. 35 km before the Cyclades–Menderes thrust formed in the Eocene. D_{A2} structures aided this early exhumation, either by vertical ductile thinning, normal faulting, or a combination of both.

Conclusions

The Anatolide belt of western Turkey was assembled by top-to-the-south thrusting of the Cycladic blueschist unit onto the Menderes nappes during greenschist-facies metamorphism in the Eocene. The Menderes nappes as part of the Anatolian microcontinent successfully resisted subduction, whereas the easternmost part of the Adriatic plate had been subject to sustained high-pressure metamorphism. The different tectonometamorphic history of these units contradicts the model that the Menderes nappes are the eastern continuation of the Cycladic blueschist unit. The Cycladic blueschist unit displays a prograde Alpine D_{A1} fabric, which was overgrown by a high-pressure mineral assemblage. The onset of D_{A2} occurred during initial decomposition after this high-pressure event and is associated with top-to-the-NE shearing. A subsequent top-to-the-south greenschist-facies D_{A3} event affected the Cycladic blueschist unit and the Menderes nappes together. Late during D_{A3} the contact between the Cycladic blueschist unit and the Menderes nappes, the Cyclades–Menderes thrust, formed. The Cyclades–Menderes thrust defines an out-of-sequence ramp structure, which cuts up-section through Menderes nappes towards the south. In the Cycladic blueschist unit, late D_{A3} fabrics associated with the Cyclades-Menderes thrust crosscut high-pressure D_{A2} structures. In the footwall, D_{PA} structures in the Bozdag nappe were deformed by the Cyclades–Menderes thrust. The Cycladic blueschist unit was exhumed by c. 35 km before the Cyclades–Menderes thrust formed in the Eocene. D_{A2} structures aided this early exhumation, either by vertical ductile thinning, normal faulting, or a combination of both.

References

OUT OF SEQUENCE THRUSTING, WESTERN TURKEY

Parejas, E. 1940. La tecnotonique transversale de la Turquie. Reviews of the Faculty of Science of the University of Istanbul Series B, 5, 133-244.

