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ABSTRACT 

Passchier, C.W., 1993. The sliding-scale Mohr diagram. Tectonophysics, 218: 367-373. 

Mohr diagrams for the position gradient tensor are a useful tool in problems of finite deformation, for example to 
determine the angle between deformed lines and the angle of rotation of finite strain axes. The conventional Mohr diagram 
is less suitable, however, to visualise progressive deformation or deformation paths. A sliding-scale Mohr diagram is 
introduced which serves this purpose better. It consists of a Mohr circle of fiied diameter and a mobile reference frame 
origin that maps the deformation path. The sliding-scale Mohr diagram can be used as a visualisation tool for teaching 
purposes and for research on kinematics of progressive deformation. 

Introduction 

Mohr diagrams are commonly used in geology 
as a graphical representation of tensors. Well 
known examples are the Mohr diagrams for the 
stress tensor (Mohr, 18821, for finite strain ten- 
sors (Nadai, 1950; Ramsay, 1967; Means, 19761, 
for the velocity gradient tensor (Lister and 
Williams, 1983; Passchier, 1986, 1987, 1991) and 
for the position gradiept tensors F and H. The 
Mohr diagrams for F and H were introduced by 
DePaor (1981) and Means (1982) as an alterna- 
tive for the commonly used finite strain Mohr 
diagram (Nadai, 1950). Treagus (1990) gave a 
three-dimensional application of this diagram. In 
contrast to the Mohr diagram for strain which is 
symmetric by definition, the diagrams for the 
position gradient tensors F and H can be asym- 
metric and off-axis. As such, they are useful to 

illustrate non-coaxial progressive deformation 
since they can represent the rotational compo- 
nent of finite deformation as well as strain 
(Means, 1982, 1983; DePaor, 1983; DePaor and 
Means, 1984). 

The Mohr diagram for the position gradient 
tensor F has been used in kinematic studies in 
geology for the calculation of angles between 
deformed lines and to determine stretch values 
along material lines (Means, 1983; Passchier and 
Urai, 1988; Wallis, 1992). Each point on the Mohr 
circle for F represents the orientation of a paral- 
lel set of material lines, and the polar coordinates 
of each point on the circle represent the stretch 
and rotation of these lines (Fig. la>. Angles be- 
tween points on the circle, measured along the 
circle, represent twice the angle between material 
lines in real space in the undeformed state 
(Means, 1982, 1983). 

Deformation path 

Correspondence to: C.W. Passchier, Instituut voor Aardweten- 
schappen, Universiteit Utrecht, Budapestlaan 4, 3508 TA 
Utrecht, The Netherlands. 

Bobyarchick (1986) and Passchier (1988a,b) 
have shown how Mohr diagrams for F can be 
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used to represent progressive deformation, i.e. to of a group of overlapping circles and lines which 
illustrate deformation paths for a volume of ho- can become difficult to interpret (Fig. lb; Bob- 
mogeneously deforming rock. However, represen- yarchick, 1986; Passchier, 1988a,b). It is particu- 
tation of progressive deformation involves the use larly difficult to see what happens to the angle 

(b) Conventional Mobr diagram 
fixed scale - expanding circle 

(C) Sliding scale Mobr diagram 
fixed circle - shifting scale 

constrictional flow extensional flow 
eigenvector eigenvector 

Fig. 1. (a) Illustration of the way in which finite deformation of a volume of material as illustrated in the inset is represented in a 

Mohr diagram for the position gradient tensor F. Each point on the circle such as L represents a set of parallel material lines; the 

rotation (0) and stretch (S) of these lines (inset) is plotted in polar coordinates in the Mohr diagram. (b) Progressive deformation of 

a volume of material as illustrated in the inset is plotted in a Mohr diagram for F by a series of Mohr circles. Rotation of two 

material lines (inset) is shown by series of lines radiating from the M-frame origin to dots on the circles. (c) The same deformation 

sequence (inset) can be plotted in a sliding-scale Mohr diagram. Rotation of two material lines is shown by series of lines radiating 

from two dots on the fixed circle to a mobile M-frame origin (MFO). Further explanation in text. 
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between material lines during progressive defor- 
mation (Fig. lb). Also, it is difficult to compare 
deformation states for small and high strain val- 
ues because excessively small or large circles are 
needed. Since angles between lines are indepen- 
dent of dilatancy or scale, it should be possible to 
construct a Mohr diagram in which changes in 
angles between lines can be shown more advanta- 
geously. 

Sliding-scale Mohr diagram 

Since the angle between lines is independent 
of scale, each of the circles in Figure lb could be 
changed to a standard diameter. A sequence of 
progressive deformation states could in that case 
be represented by a single fixed circle in a dia- 
gram of changing scale. Figure lc shows an exam- 
ple of such a ‘sliding-scale Mohr diagram’ (SSM- 
diagram) for progressive deformation. An SSM- 
diagram uses two independent reference frames; 
a fixed ‘SSM-frame’, and the Mohr circle refer- 
ence frame (M-frame), which can shift and rotate 
with the respect to the SSM-frame, and change 
scale (Fig. 1~). 

The SSM-diagram has a number of unusual 
properties (Fig. 1~). Sets of parallel material lines 
can be represented by a fixed point in the SSM- 
frame on the circle for the entire deformation 
sequence. Angles between lines in the unde- 
formed state are fixed in the same manner. The 
origin of the M-frame (named MFO in this pa- 
per) moves towards the circle with progressive 
deformation, and reaches the circle at infinite 
strain (Fig. lc). It cannot pass into the circle, 
since this would imply a change from right-handed 
to left-handed space. Any deformation state, from 
incremental- to infinitely large strain values can 
all be shown in a single diagram (Fig. lc). Incre- 
mental deformation can be shown by horizontal 
lines which stretch away to the MFO at infinity 
(Fig. 14. This ability of the SSM-diagram to 
illustrate incremental deformation in a finite de- 
formation diagram is a particularly useful aspect 
(Fig. 14. Changes in the orientation of a material 
line with progressive deformation can be repre- 

sented in a clear way by the change in orientation 

of the line that radiates from a point (repre- 
senting the material line) on the circle towards 

the MFO (Fig. lc). The path of the MFO in the 
SSM-frame can be used as a representation of 
the deformation path for a homogeneously de- 
formed volume of material. 

Relation with the position gradient tensor 

Any finite deformation state can be plotted in 
an SSM-diagram by a point representing the 
MFO. A two dimensional position gradient ten- 
sor F for a finite deformation state can be de- 
scribed by the matrix: 

F= f ; ( 1 
where (a, -c) and (d, b) are two diametrically 
opposite points on a Mohr circle for F, represent- 
ing the orientation of material lines coinciding 

with real-space reference axes in the undeformed 
state (Means, 1982). The Mohr circle for F can 
be constructed by plotting these two points in a 
Mohr diagram (Means, 1982, 1983). 

An SSM-diagram for F can be constructed as 
follows. A unit circle with radius 1 is drawn in the 
SSM-frame, centred in the origin of the reference 
frame, and the position of the MFO is calculated 
for each finite deformation state F. Since each 
point on the SSM-circle represents the same ma- 
terial line throughout a deformation sequence, it 
is necessary to use some standard orientation of 
the real-space reference frame. Here, a real-space 
reference frame is chosen fixed to instantaneous 
stretching axes for the first increment of the 
deformation history (Ramberg, 1975; Passchier, 
1987, 1991). This means that the points (a, -cl 
and (d, b) represent the instantaneous shortening 
and extension axes at the onset of deformation, 
and always plot on a horizontal diameter of the 
SSM-circle (Fig. 2; Passchier, 1990). Notice that 
M-frame axes are not necessarly parallel to 
SSM-frame axes in this diagram. The Cartesian 
coordinates (h, u) of the MFO in the SSM-frame 
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can now be expressed in terms of matrix compo- 
nents a, b, c and d as: 

2 
h= - 

c(b+c)(d-a) +a(b+-c)* 
d-_a a- 

i (b+c)2+(d-a)2 

d-a 

+ 2 
---I 

L! = 2 
i 

c(d -a) +a(b+c) 

(b+c}‘+(d-a)’ I 

Coordina’tes h and u are expressed in units of the 
circle radius r; h = 0.5 implies that the MFO lies 
a distance of 0.5 r from the edge of the circle. 
The SSM-diagram is most useful for problems 
involving angles between lines, and stretch values 
of material lines cannot be directly read from the 
diagrams. However, principal stretch values can 
be calculated using: 

S, = 0.5 (d - a)’ + (b + c)’ + dhv- 

S,= -0.5 (d-a)2+(b+c)2 +dm 

Deformation histories in SSM-diagrams 

One of the most simple deformation histories 
is one where flow parameters such as vorticity 
and dilatancy-rate are time-independent and 
where the real-space reference frame remains 
fixed to the instant~eous stretching axes (Pas- 
schier, 1988b). Such a progressive deformation is 
non-spinning (Lister and Williams, 1983; Pass- 
chier, 1986). In this case, the MFO is always on a 
horizontal path in the SSM-diagram (Fig. 2a), 
and the vertical distance from this path to the 
circle centre, divided by the circle radius coin- 
cides with the kinematic vorticity number of flow 
W,. (Fig. 2a,b; Means et al., 1980; Passchier, 
1986). In ho-dimensional Bow, JVk is the ratio of 
vorticity W to the mean stretching rate s: 

w, = w/s 

W, is 1 for a simple shear flow, and 0 for a pure 
shear flow (Means et al., 1980; Passchier, 1986). 
For non-spinning and time-independent flow pa- 
rameters during progressive deformation, the M- 
frame changes scale but does not rotate in the 
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Fig. 2. Deformation paths shown in sliding-scale Mohr dia- 
grams. Squares indicate the position of the origin of the 
M-reference frame (MFO) during several stages of progres- 
sive deformation. Vectors on MFO-squares indicate the verti- 

cal axis of the Mohr-frame (M-frame). Dots on the circle 
indicate material lines that were parallel to instantaneous 
stretching axes at the onset of deformation; (a) MFO-paths 
for non-spinning and spinning progressive deformation with 
time-independent flow parameters. For spinning behaviour, 
the M-frame orientation changes with time; (b) MFO-paths 
for non-spinning progressive deformation with time-indepen- 
dent flow parameters at different vorticity numbers of flow; 
Cc) MFO-paths for progressive deformation with time-depen- 
dent flow parameters; breaks in the curves show where flow 

parameters change. ss = simple shear; ps = pure shear. 

SSM-frame (Fig. 2a). Material lines which are 
parallel to flow eigenvectors plot as two points on 
the circle where it is intersected by the path of 
the MFO (Fig. lc). 

A more complex situation occurs where vortic- 
ity and dilatancy rate are time-independent, but 
where the instantaneous stretching axes spin in 
the real-space reference frame (Lister and 
Willis, 1983; Fig. 2a). In that case, the MFO 
approaches the circle along a curved line, and the 
M-frame rotates with progressive deformation. 
As a result, it is necessary to indicate the orienta- 
tion of one of the M-frame axes by a vector (Fig. 
2a). Since spinning behaviour for a single volume 
of material is dependent on the choice of the 
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real-space reference frame, it can be reduced to 
non-spinning behaviour by the choice of another 
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straight paths of Figure 2a,b can therefore be 
used. 

frame. For many deformation histories, the If flow parameters are time-dependent and the 

(a) rotation of a material line (b) rotation of finite strain axes (c) accumulation of shear strain 

simple shear simple shear 

(d) maximum shear strain angles (e) reversal of shear strain 

(f) reversal of rotation angle 

- simpleshear 

(g) maximum rotation angles 

Fig. 3. Examples of seven practical applications of sliding-scale Mohr-diagrams. For each application, several situations are shown 
for different vorticity numbers (b, c, d, e, g) or material line orientations (a). Squares indicate the position of the origin of the 
M-reference frame (MFO). MFO-paths are indicated by grey straight lines. Ornamented sectors on the Mohr circles indicate the 
path on the circle during progressive deformation of axes which are not fiied to material lines. Curved arrows indicate sense of 

rotation of lines or axes. Straight arrows indicate MFO-movement direction with progressive deformation. 



instantaneous stretching axes are non-spinning, 
the MFO path and the orientation of the refer- 
ence frame vector vary in a complicated way. 
Figure 2c shows examples of deformation paths 
with two subsequent periods of non-spinning 
time-independent flow; the kinematic vorticity 
number is changed once during progressive de- 
formation. It is interesting to note that even in 
this relatively simple case of non-spinning pro- 
gressive deformation with one single change in 
kinematic vorticity number, a spin component is 
induced by the change (Fig. 2~). 

Finally, flow can be both time-dependent and 
spinning. In that case the deformation path can 
also be illustrated by the MFO path and a vector, 
but the patterns will be difficult to interpret. 

Practical use of the sliding scale mohr diagram 

The SSM-diagram is a useful visual aid to 
study the change in orientation of material lines 
with progressive deformation (Passchier, in prep). 
It can be used as a research tool, but its main 
usefulness may be as a mnemonic aid and in 
teaching. Although the SSM-diagram can be used 
to illustrate any type of deformation path, it is 
most useful to illustrate the effects of non-spin- 
ning time-independent progressive deformation 
(Figs. 2a, 3). In this case it can illustrate some 
well-known effects of progressive deformation in 
an elegant and systematic way. Some examples 
are given below. 

(a) Rotation of material lines 
SSM-diagrams can show how material lines 

rotate during progressive deformation with re- 
spect to each other and to flow eigenvectors (Fig. 
3a). Material lines which are parallel to flow 
eigenvectors are irrotational; the MFO moves in 
a straight line towards the points on the circle 
that represent these lines (Figs. lc, 3a top). If 
material lines plot on opposite sides of the MFO 
path on the circle, they rotate in opposite direc- 
tions (Fig. 3a centre). In the case of non-coaxial 
progressive deformation, the lines below the path 
rotate against the shear direction. In the case of 
progressive simple shear, all material lines rotate 
in the same direction (Fig. 3a bottom). 

All material lines rotate into parallelism at 
infinite strain. The rotation angle between mate- 
rial lines at infinite strain, when the MFO lies on 
the circle, coincides exactly with the initial angle 
between the lines, i.e. they are parallel in this 
case (Fig. 3a). If the origin passed into the circle, 
lines would cross each other but this would imply 
a change from a right- to a lefthanded real space. 

(6) Orientation of finite strain axes with respect 

to material lines 
Finite strain axes coincide for any deformation 

state with the two material lines on the circle 
which are nearest and furthest from the origin, 
i.e. those on a line through the circle centre (Fig. 
3b). The SSM-diagram can illustrate how for all 
progressive deformation histories except pure 
shear, finite strain axes rotate through the de- 
forming material from incremental to infinite 
strain (Fig. 3b). For incremental strain, principal 
strain axes are symmetrically arranged with re- 
spect to flow eigenvectors; they coincide with 
instantaneous stretching axes. At infinite strain 
the long strain axis coincides with the extensional 
flow eigenvector. 

(c) Shear strain accumulation depends on uor- 
ticity and material line orientation 

Angular shear strain for a material line is 
illustrated in the SSM-diagram by the angle be- 
tween lines connecting the MFO to the point on 
the circle representing the material line, and to 
the point representing its normal on the circle 
(Fig. 3~1. These points are 180” apart on the circle 
since they are orthogonal in the undeformed state. 
The diagram shows how shear strain accumulates 
to 90” for any set of orthogonal lines for pure 
shear- (Fig. 3c top), general- (Fig. 3c centrel and 
simple shear (Fig. 3c bottom) deformation histo- 
ries. Notice that in the case of progressive simple 
shear, shear strain of the material line along the 
flow plane can be used as a unique measure of 
finite strain. 

Cd) Lines of minimum and maximum shear 
strain are not fired to material lines 

Lines which have zero shear strain are parallel 
to finite strain axes (Fig. 3b). Lines with maxi- 
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mum shear strain were initially at angles of 45” to 
lines of zero shear strain (Fig. 3d). Both sets of 
lines are not fixed to material lines, except for 
pure shear (Fig. 3d top). The angle over which 
lines of maximum shear strain can rotate within 
the material can be read from the SSM-diagram 
in Figure 3d for three deformation histories. 

(e) Shear strain can be reversed for some mate- 
rial lines 

For some material lines in non-coaxial defor- 
mation sequences, shear strain can first increase, 
then decrease to zero, and eventually reverse 
(Fig. 3e). This happens if both the material line 
and its normal plot on the circle on one side of 
the MFO-path. Consequently, it cannot occur in 
a pure shear deformation sequence. Two exam- 
ples for different deformation histories are shown 
(Fig. 3e). 

(f) Angle between sets of material lines can first 
increase, then decrease 

For two material lines at a small angle to each 
other in the undeformed state, the angle may first 
increase, then decrease to the original value, and 
eventually to zero (Fig. 3f). The SSM-diagram 
shows that this only applies to line sets which lie 
initially in the instantaneous shortening field of 
deformation and on one side of the MFO-path. 

(g) Lines of maximum finite rotation are not 
fixed to material lines 

The SSM-diagram shows that lines of maxi- 
mum finite rotation do not coincide with the 
same material lines throughout progressive defor- 
mation (Fig. 3g). They can rotate through the 
material over 45” (pure shear progressive defor- 
mation, Fig. 3c top) to 90” (simple shear progres- 
sive deformation, Fig. 3c bottom). 
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