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Analysis of deformation paths in shear zones 

By C. W. PASSCHmR, Utrecht*) 

With 9 figures 

Zusammenfassung 

Die Geometrie duktiler Scherzonen kann dazu verwendet 
werden, regionaltektonische Probleme zu 16sen, sofern der 
im Material abgebildete Deformationsweg dieser Zonen ge- 
ntigend verstanden wird. Der Flow in viden Scherzonen mag 
sich aus einfacher Scherung ableiten lassen, daher gentigen Da- 
ten tiber den letzten Deformationszustand wie z. B. der fini- 
te Strain und die Volumen~nderung nicht ftir die 
Rekonstruktion des Deformationsweges, auch nicht bei kon- 
stanten Flie~parametern w~hrend der fortschreitenden De- 
formation. Zus~.tzliche Daten iiber die Verwirbelungszahl 
(Rotationszahl) sind nStig. Sie lassen sich ableiten aus verschie- 
denartigen Geftigeelementen wie Gruppen gefaltet- 
boundinierter G~inge, rotierten Porphyroblasten und ,~ver- 
klemmtem~, starren Objekten. Vorgestellt werden anhand yon 
Geftigedaten Konstruktionen am Mobr'schen Spannungskreis 
zur Bestimmung der Deformationsparameter, um damit den 
Deformationsweg graphisch darzustellen und daraus die Flief~- 
parameter abzuleken. Anderungen in der Rota~ionszahl (Vor- 
ticity) oder der Geschwindigkeit in der Volumen~inderung 
w~ihrend progressiver Deformation erlauben den Deforma- 
tionsweg zumindest teilweise zu rekonstruieren. Verwendung 
finden hierbei diejenigen Geftigeelemente, die sowohl die 
durchschnittliche Deformation als auch die letzten Deforma- 
tionsereignisse registriert haben. 

Abstract 

The geometry of ductile shear zones can be used to solve 
problems of regional tectonics if the deformation path of 
material in the zones is sufficiently understood. Flow in many 
shear zones may have deviated from simple shear and conse- 
quently data on the final deformation sta~e such as finite strain 
and volume change are insufficient for reconstruction of the 
deformation path, even if flow parameters were constant dur- 
ing progressive deformation. Additional information on the 
flow vorticity number is also needed and can be obtained from 
fabric elements such as sets of folded-boudinaged veins, rotated 
porphyroblasts and blocked rigid objects. Mohr circle con- 
structions are presented as a tool to calculate deformation 
parameters from fabric data, to represent the deformation path 
graphically and to reconstruct flow parameters from the shape 
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of this path. If the vorticity number or the volume change 
rate changed during progressive deformation, the deforma- 
tion path can be partly reconstructed using sets of fabric 
elements which register mean and final values of these 
parameters. 

R&um~ 

La g~om&rie des shear zones ductiles peut &re utilis& pour 
r&oudre des probl~mes de tectonique r~gionale, pour autant 
que l'histoire de la d~formation des mat&iaux de ces zones 
soit suffisamment bien comprise. I1 peut arriver, dans beau- 
coup de shear zones, clue le processus ductile se soit &art~ 
du mod~le du glissement simple et qu'en consequence, ies 
caract~res finals de ia d~formation, tels que l'ellipso'ide de la 
d~formation finie, ou le changement de volume, s'av~rent 
insuffisants pour pouvoir reconstruire l'histoire de la d&for- 
mation et ce, m~me sites param~tres de fluage sont rest& cons- 
rants au cours du processus. I1 est alors n&essaire de disposer 
d'informations suppl~mentaires quant ~ la vorticit~; ces infor- 
mations peuvent &re fournies par certains ~i&ments structu- 
raux tels que des groupes de veines pliss&s-boudin&s, des 
porphyroblastes qui out torun~ et des objets rigides bloqu&. 
Au moyen de constructions appliqu&s au cercle de Mohr, il 
est possible de calculer les param~tres de [a d~forma,cion ~ partir 
des donn&s structurales, de repr&enter graphiquement l'his- 
toire de la d~formation et de retrouver les param~tres de fluage 

partir de la forme de cette repr&entation. Si, au cours de 
la d~formation progressive, la vortick~ ou le taux de varia- 
tion de volume se modifient, l'histoire de la d~formation peut 
&re reconstitu& partiellement par l'utilisation de groupes d'~l&- 
ments structnraux qui enregistrent les valeurs moyeene et 
finale de ces param~tres. 

KpaTxoe eo~ep~aHHe 

Ec~r~ r~pu 14ccJIe,aoBaHi414 IlOpO;I 5IHHH~ ~e~opMalIIKH 
II-rlaCTH~IHblX 3OH CKO.IIa JIOCTaTOrlHO xopoIIIO l-I3yqeHa, 
TO Ha OCHOBaHHH qbOpMbI 3THX 3OH CKOJIa y;laeTc~ 
pelIil4Tb TeRTOHHr-IeCKHe IIpO~JIeMbI peFHOHa3II~HOFO xa- 
paKTepa. HarlpaB3IeHHe reqeHH~ BO MHOFHX 3OHaX CKO- 
.via MO>KHO BBIBeCTH Ha OCHOBaHHH IlpOCTOFO CMeKIeHH~I 

H, C3le~IOBaTeJll, HO, IIO COCTO~IHHIO FIX noc / Ie )2He~ ,ae- 

qbopMaHri~4. O~HaKO, KoHeqHa~ ~eqbopMaHH~l H H3MeHe- 
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Hlle o6~eMa OKa3I, IBalOTC~I He)IoCTaTOqHblMtI ~rI~I pe- 
KOHCTpyKLIHI4 IIyTl4 lleqbopMalmI~, ec~In 2Iaxe napa- 
MeTpbI rtOTOKa 0CTalOTC~I HeI43MeHHblMI4 BO BpeM~t no- 
cJaelIoBaTeiiLHO ycHnrlsaromefic~ ~ieqbopMalmH. Heo6- 
XO~IHMbI eme JIOHO.rIHHTe.rlbHble 2(aHHble 0 CKOpOCTI4 Te- 
qeHM~l, KOTOpyto MOXfHO BblBeCTH I43 :~YleMeHTOB TeK- 
cTypbI, l(aK Hanp.: CHCTeM )KH~I, CMSITbIX B cKna~Ky ~I npe- 
06pa30~aHHbie B 6y2IrIHLI 3aKpyqeHHblX nop~rtpo6JIac- 
TOB H ((3aKYlHHeHHbIX)> HelIO~IBHX~CHblX 06~,eKTOB. I/I3 

~IaHHblX CTpOeHti~ TeKCTypbI B n o n e  Hanp~)KeHrt~ Mopa 
Ollpe;le~ialOT napaMeTpbi  ~IedpopMallm4, IiO KOTOpblM 

CTpO~IT rpaqbnKr~ IIyTH ee TeqeHl4~. Kone6aHH~ qi4cy/a 
BparaleHt4~, t4JIH CKOpOCTI4 t43MeHeHH$t 06~eMa BO BpeM~ 

npollo~I)KamlIIefic~ ~IeqbopMallHH pa3pemamT, XOT~ 6hi 

qaCTHqHO, pegOHCTpyHpOBaTb IIyTH ee npoweKaHH~. 
Hpi4 9TOM OHHpalOTC~I Ha Te cTpyKTypm, Ie 3~IeMeHT~I, 

KOTOpble OTMeqeHbI, ~aK npn)Ie~opMalIlelI4 Bce!~I ~IanHofi 
IlOpO/~hi B cpe~IHeM, TaR H B0 BpeM~ noc~ie~iHero npo-  

IIecca ~Ied~opMatm~I. 

Fig. 1. Three different macroscopic deformations with for- 
mation of shear zones lead to identical shear zone/wall rock 
foliation geometry. In (a), an older foliation is cut by shear 
zones with a rigid wall rock. In (b) and (c) the original material 
is undeformed. Analysis of the deformation path in the shear 
zones can help to distinguish these situations. 

In t roduc t ion  

Ductile shear zones, which are common structural 
elements at mid to deep crustal levels, are the effect 
of strong flow parti t ioning in rocks. They can be used 
for the reconstruction of large-scale tectonics in 
orogenic belts since they accommodate a large part of 
the regionally imposed deformation and are relatively 
easy to map or to detect on seismics (e.g. CAZES et al., 
1985; SMITHSON et al., 1979; SMYTHE et al., 1982; 
PASSCHIER, 1986a). Flow in shear zones is often assum- 
ed to approach simple shear parallel to zone boundaries 
because of monoclinic shape fabric elements and high 
finite strain in the zone, which is absent or less pro- 
nounced in the wall rock. In fact, only shear zones with 
perfectly undeformed wall rocks and absence of volume 
change can satisfy this assumption. In most natural 
shear zones flow was not necessarily a simple shear and 
flow parameters may have changed during the deform- 
ation. This is a serious problem, since superficially 
similar fabric patterns in a shear zone and its wall rock 
may have formed by a large variety of different flow 
patterns in completely different large scale tectonic set- 
tings (Fig. 1); a detailed analysis of the deformation path 
in the shear zone and if possible in the wall rock is 
needed to distinguish between them. This paper gives 
an outline of the way in which fabric data from shear 
zones can be used to reconstruct at least some aspects 
of the deformation path, and explains the influence of 
flow parameters on the shape of the path. 

F low patterns 

Homogenous flow in a volume of rock can be 
described in a purely geometrical way, regardless of the 

presence of anisotropies or the rheology of the material 
involved, by equations of the type: 

where L is the velocity gradient tensor, X a position 
in space and X the rate of displacement of a particle at 
that position (MALVERN, 1969; LISTER & WILLIAMS, 

1983; PASSCHIER, 1986b). The description can be 
restricted to plane strain or two dimensional flows if 
the vorticity vector of the flow remains parallel to the 
intermediate instantaneous stretching axis, and if 
stretching rates along this axis are negligable. This is 
a reasonable assumption for many shear zones since 
(1) the intersection lineation of various foliations usual- 
ly parallels the symmetry axis of microstructures with 
monoclinic shape symmetry such as shear band 
cleavage, mica fish or feldspar porphyroclast  systems 
(SIMPSON ~X~ SCHMID, 1983; PASSCHIER, 1986a; PASSCHIER 
& SIMPSON, 1986) and (2) stretch parallel to this sym- 
metry axis is usually of minor importance. A simplistic, 
two dimensional approach assuming absence of stretch- 
ing in the direction of the vorticity vector is adopted 
throughout this paper to restrict the complexity of the 
model while illustrating the techniques that can be us- 
ed; more realistic, complex three dimensional flows can 
be approached along the same lines if sufficient data 
are available. 

Flow in a plane normal to the vorticity vector can 
be represented by L in a 2 x 2 matrix with instan- 
taneous stretching axes (ISA) fixed at 45 ~ to an exter- 
nal reference frame, as (PAssCHIER, 1987#: 

L s - W n �9 s 
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Any other orientation of ISA is equally valid provid- 
ed they are fixed in the external reference frame, but 
leads to more complex tensor components (PAssCH•R, 
1987a). Alternatively, L can be represented as a Mohr 
circle (Fig. 2; LISTER & WILLIAMS, 1983). Cartesian 
coordinates of each point on the circle represent the 
angular velocity ~0 and the stretching rate ~ of a material 
line (LIsTn~ & WILLIAMS, 1983; PASSCHIER, 1986b). sl 
and s2 represent instantaneous stretching rates along 
ISA, s is the mean instantaneous stretching rate s = 
(sl-s2)/2 and a the volume change rate a = sl + s2, 
provided stretch in the direction of the vorticity vec- 
tor is negligible. For isochoric flow a = 0. In Mohr 
circle presentation, s is the circle radius, a the devia- 
tion of the Mohr circle center from the vertical axis 
and W/2  the deviation from the horizontal axis (Fig. 
2), where W is the flow vorticity (MALvERN, 1969; 
TRUESD~LL, 1954). Wn is the neutral vorticity number 
Wn = W/2s.  W~ does not generally coincide with the 
kinematic vorticity number of TXUESDELL Wk 
(Tt~u~SDELL, 1954; MEANS et al., 1980) except if a = 0. 
Intersection points of the Mohr circle with the horizon- 
tal ~0 = 0 axis represent material lines in the flow which 
are instantaneously irrotational with 
respect to ISA, also called ~,flow apohyses,< (PAssCHmR, 
t986b; RAMB~RG, 1975a, 1975b). Material points on the 
apophyses move in straight lines towards or away 
from the origin of the reference frame. Flow apophyses 
have a fixed symmetrically arranged position with 
respect to ISA and are useful in graphs illustrating flow 
patterns (Fig. 2a). The angle between flow apophyses 
is a function of W, only and is independent of a (Fig. 
2; PASSCHIn~, 1986b; BOBYARCHICK, 1986; I~AMBERG~ 
1975a, 1975b). 

In contrast to the description of flow, incremental 
or finite deformation is expressed in equations of the 
type: 

X'p = Fpq - Xq 

F being the position gradient tensor, X the original 
position of a particle, and X' its final position 
(MALVERN, 1969; MEANS, 1982). The incremental posi- 
tion gradient tensor Fi is derived from L by integra- 
tion as: 

l . ~t (s + W~. s) 

Fi = L �9 dt =L(s-Wn.s) at a . a .  

For flow with invariable paramters s, a and Wn, the 
finite position gradient tensor Ff can be derived from 
Fi by the eigenvector method (KRnDER, 1972) or by 
sequential multiplication of n tensors F~ (ELLIOTT, 
1972), rewriting the resulting binomial series as: 

lim 
Ff = a t  - o (Fi)n= exp (L. t) 

(n.at=t) 

If 0 -< W, < 1 this can be written as (McKzNZlE, 
1979; PASSCHIEP,, in prep): 

Ff (~ exp (a. t) 

1 +W n )_l 

f osh (s. t. ~ ~ .sinh (s. t. X/I--~-~ 2 

! 1-xv n ' s inh (s. t. ~ )cosh (s. t. ~ J  

If Wn = 1 (simple shear) Ff can be written as: 

_ s .  

F}Wn= 1)= exp (a. t) 

(CI) REALSPACE 

A 2 .,~ISA~ 

PIOHR SPACE 

Fig. 2. Representation of a general flow field in real space (a) 
and Mohr space (b); ISA -- instantaneous stretching axes; AP 
-- flow apophysis; W -- vorticity; s -- mean instantaneous 
stretching rate; a -- instantaneous volume change; o~ -- angle 
between flow apophyses. Cartesian coordinates of each point 
on the Mohr circle represent angular velocity (a~) and instan- 
taneous stretching rate (i) of a material line in real 
space. 
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A B 

TRETEH 

\I / / I  / i 4 \  

PURE SHEAR ~ ~  

: ~ / n  = ' SIHPLE SHEAR 

Fig. 3. (a) Mohr circle for the finite position gradient tensor Ff. Polar coordinates of each point on the circle represent stretch 
and rotation of a material line in real space as shown on the right; (b) progressive deformation for three different vorticity 
numbers Wn, illustrated in Mohr space by series of Frcircles with increasing diameter. For each case, flow is homogeneous 
with constant a and Wn- Solid arrows show the different stretch/rotation histories in each case for a material line which 
was originally oriented at 30 ~ to the instantaneous shortening axis. 

Both matrices for F~ given above can be represented 
in a Mohr space as off-axis circles of a type different 
to that used to illustrate L (Fig. 3; BoBxa~cHIct;, 1986; 
MEANS, 1983; DE PAOR, 1983; DE PAOR & MEANS, 
1984). For this type of Mohr construction, stretch is 
plotted on both axes and polar  coordinates of a point 
on the Fp-circle represent the stretch and rotation of 
a material line in real space (Fig. 3a; MEANS, 1982, 
1983). Progressive deformation can be illustrated in 
Mohr space by circles of increasing diameter which shift 
from a stretch value 1 on the horizontal axis into the 
space (Fig. 3b; BOBYARCHICK, 1986; PASSCHmR, in press). 
The shape of the path along which the Mohr circle 
center moves is a function of s, a, Wn and their 
change with time. For invariable coefficients of L, such 
paths are regular curves as shown in Figure 4 for 
isochoric flow. 

The radius of the Mohr circle (R) is a simple func- 
tion of the volume change factors (a.t) or AV and a 
factor T representing the distance of the Mohr circle 
to the origin (Fig. 5). For any point on one of the 
,,Mohr-circle center paths<< of Figure 4, R can be 

calculated and the Mohr circle constructed if sufficient 
data on volume change up to that point are available. 
Since the Mohr circle represents the full position gra- 
dient tensor, the stretch rotation of any material lines 
at that stage can now be determined. This means that 
the path of the Mohr circle center in Mohr space (Fig. 
4) is a useful presentation of the ,,deformation path,< 
(ELLIOTT, 1972); it contains the full information 
necessary to find the current position gradient tensor 
Fp at any stage of the deformation, provided volume 
change is known for that stage. The shape of the path 
for naturally deformed rocks will usually deviate from 
the standard curves in Figure 4; the shape of the path 
can reflect changes in flow parameters s, a and W~ 
during progressive deformation, e.g. a change from pure 
shear to simple shear flow. With the deformation path 
known, it is possible to follow the stretch and rota- 
tion history of any individual material line, e.g. a shear 
zone boundary during the deformation (Fig. 3b), and 
thereby predict possible flow regimes in the wall rock. 
This makes an analysis of the deformation path useful 
for many shear zones. 
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W n >1.0 

~=15- 

%~r 

Af=5~ 

STREIs 

Fig. 4. Paths traced by the center of the Ff-Mohr circle during progressive deformation by isochoric flow with invariable 
W,. Concentric curves are Mohr circle center positions for specific Revalues. 

Analysis of the deformation path 

For a complete analysis of the deformation path in 
a volume of rock, the path of the Mohr circle center 
for F~ must be fully reconstructed. If flow parameters 
s, a and Wn did not change during the deformation, 
it is sufficient to determine Ff for the final state of the 
deformation, since this automatically decides which of 

1 
the curves as in Figure 4 has been followed. Ff can be 
reconstructed by finding the size and position of its 
Mohr circle, e.g. by calculation of T, R and Q from 
fabric data (Fig. 5b) or by determination of stretch and 
rotation of at least three random material lines, which 
will lie on the circle (PAsscrtm~ & URAI, in prep). RI, 
the axial ratio of the finite strain ellips and dlV, the 
volume change, are always sufficient to determine T 
and R for any type of deformation path (Fig. 5b). If 
flow was known to be a pure shear, these data are suf- 
ficient to construct the Mohr circle since Q = 0. For 
persistent simple shear flow, knowledge of R~, dlV and 
sense of shear are sufficient since Q = R. For more 
general flow types (Fig. 5b), Q must be calculated from 1 
Rf, ~V and W,. Methods to determine Wn and Q are 
outlined below. With the Mohr circle reconstructed, 
matrix components of Ff can be read off following 
the method described by MEANS (1982, 1983). 

Markers for W. 

The rotation of material lines during deformation 
with respect to a randomly chosen external reference 
frame consists of a vortical rotation component with 
respect to ISA, and a spin component of ISA in the 
external reference frame (LISTER & WILLIAMS, 1983). 

Many fabric elements only store information on the 
vertical rotation component, and can therefore be us- 
ed to calculate Wn of flow during the deformation. It 

R=exp[a.t]. sinh[s.t] T= CR~§ exp[2at]' 
(a) ~ R  

(b) R=Y~I~-~I 
T : ~  

Q=Wn ~'R 

Fig. 5. Representation of parameters T, R and Q of an FF 
Mohr circle in terms of: (a) flow parameters a, s, Wn and time 
t; (b) finite deformation parameters Rf, ~V and ,,meam, vor- 
ticity number Wn. 
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FLOW TYPES 
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FABRIE TYPES 

Fig. 6. Schematic illustration of the orientation dependence 
of certain fabric elements on specific directions in the flow; 
elements such as tails of recrystallized material (T) around por- 
phyrodasts rotate towards parallelism with the extensional 
apophysis (AP) while steady state fabrics (SS) are fixed with 
respect to instantaneous stretching axes (ISA). This contrast 
leads to a dependence of fabric geometry on flow vorticity 
number. 

has long been known (Fig. 6) that some fabric elements 
develop in a fixed orientation with respect to ISA, such 
as quartz preferred orientation fabrics (LISTER & 
HOBBS, 1980), steady state foliations (M~ANS, 1981), 
symmetry axes of rigid objects blocked in the flow 
(GHosH & RAMBERG, 1976; FREEMAN, 1985; PASSCHIER, 
1987b) and fibres in crack-seal veins (DuRNEY & RAM- 
SAY, 1973). Other fabric elements, however, are link- 
ed to the orientation of the finite strain ellipsoid, which 
rotates with progressive deformation from the position 
of the extensional ISA to the extensional flow 
apophysis and trends to parallelism with this apophysis 
at high finite strains (Fig. 6). Such fabric elements of 
the second type include shape fabrics (planar and 
linear), pressure solution foliations and passively 
rotating and stretching objects, lines and planes in the 
rock. Since the angle between ISA and apophyses is 
a function of W~ only, the difference in orientation 
between a set of fabric elements from the first and se- 
cond group, combined with data on finite strain can 
be used to calculate Wo during the flow. Some ex- 
amples of W~ are (Fig. 7): 
(1) The >,finite strain method,,, measuring the angle over 
which material lines coinciding with the finite strain 
axes have rotated with respect to ISA (Fig. 7a). In Mohr 
space this is the angle fl between the circle center and 
the horizontal axis which can be plotted directly. Wn 
can be calculated following Wn = (T.sin fl)/R. 
(2) The >>Ghosh method,,, calculating W, from the ratio 
of the total finite rotation of a spherical object with 
respect to ISA and the finite strain (Fig. 7b; GHOSH, 
1987). The ratio only depends on Wo, Rf and AV. 

This method can be applied to rocks with por- 
phyroblasts which overgrew an older foliation 
(ScHoN~VELD, 1977), though great care should be taken 
that only the rotation component with respect to ISA 
is measured, and not the relative rotation between rigid 
object and foliation, both rotating with respect to ISA. 
BELL (1985) outlined some of these problems. 
(3) The ,,Talbot method,, (TALBOT, 1970; HuTTON, 
1982), using the distribution of shortened, extended, 
shortened/extended and extended/shortened lines in 
space at a specific finite strain magnitude (Fig. 7c). This 
distribution depends on Wn, Rf and AV. It is a power- 
ful method which can be used in rocks containing sets 
of veins with a sufficient range of orientations and suf- 
ficient competency contrast with the matrix. 
(4) The ,,blocked objects method,< (GHOsH ~ RAMBERG, 
1976; FREEMAN, 1985; PASSCHIER, 1987b), based on the 
fact that elongated objects can become stationary in 
flow types with 0 _< Wn < 1 (Fig. 7d). The orienta- 
tion of a blocked object with respect to ISA of the flow 
only depends on its axial ratio and W~ (Fig. 6). 
Populations of rigid objects in a ductilely deforming 
matrix in which a high finite strain has accumulated 
can be divided into a permanently rotating group with 
low aspect ratios and a blocked group with high aspect 
ratio (Fig. 7d). If both groups can be distinguished, e.g. 
by the shape of pressure shadows or recrystallized tails 
around them, Wn can be determined from (a) the ax- 
ial ratio of objects at the ,,cutoff-point,, between both 
groups and (b) the orientation of blocked objects of 
specific axial ratio with respect to a fabric element of 
the first or second type such as a compositional layer- 
ing or a steady state foliation (PAssCHIER, 1987b). 
Method (a) seems most reliable at present (PAssCHIER, 
1987b). The method only works if the matrix away 
from the rigid object deformed in a relatively 
homogeneous way. Significant flow partitioning 
around an object as envisaged by B~LL (1985) would 
inhibit the use of the blocked object method. 
(5) The >>stair stepping method,,, which can be applied 
for rigid porphyrodasts which recrystallize along the 
outer margin and develop tails of recrystallized material 
(SIMPSON ~x~ SCHMID, 1983; PASSCH1ER & SIMPSON, 1986; 
Fig. 7e). Such tails stretch out from porphyroclasts at 
two different levels, parallel to the long axis of the finite 
strain ellipsoid to produce a >>stair-stepping,, geometry 
(Fig. 7e; LISTER & SNOKE, 1984; PASSCHIER & SIMPSON, 
1986). The ratio of the distance between tails against 
the diameter of the central porphyroclast is expected 
to be a function of W~. 
(6) The >~crystallographicfabric method,,, using the fact 
that the distribution of crystal symmetry axes of a 
material deformed by crystalplastic deformation is a 
function, not only of deformation mechanisms and ac- 
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Fig. 7. Selection of fabric elements which can be used to calculate the vorticity number of the flow; (a) the angle of rotation 
5 of a material line (B) which coincides with the finite extension axis relative to ISA, determined from its rotation with 
respect to a fibrous vein system (V); (b) rotation of a spherical rigid object with respect to ISA for a specific finite strain 
value; (c) distribution of shortened (S), extended (E) and first shortened/than extended (S-E) veins in a deformed material; 
(d) range of axial ratios of rigid objects which are permanently rotating or which are irrotational (blocked) in the flow; (e) 
degree of stair stepping of tails of recrystallized material around rigid objects. 

t i re  slip systems, but also of W n (LIsTEt~ & HOBBS, 
1980; DIETRICH & SONC, 1984, LAW et al., 1984; PLaTT 
& B~HRMaNN, 1986). This method may be difficult to 
calibrate, however. 
(7) Methods involving crack-seal veins and foliation 
elements. If crack-seal veins can be shown to have 
grown parallel to the instantaneous extension axis dur- 
ing progressive deformation (DuRNEY & RAMSAY, 
1973), their orientation with respect to other fabric 
elements which trend towards parallelism with the ex- 
tensional apophysis, e.g. compositional layering, will 
give a measure of Wn. 

(8) Methods involving other fabric dements of the first 
and second type. The angle between fabric elements 
linked to instantaneous stretching axes, e.g. e-twins in 
calcite or steady state folitations, and others which 
trend towards the extensional apophysis, e.g. composi- 
tional layering is a function of finite strain and Wn. If 
sufficient data are available, this method could be 
calibrated to yield W~. 

Variable  Wn 

In cases where Wn varies with time, deformation 
paths as indicated by the movement of the Mohr cir- 
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Fig. 8. Hypothetical deformation path for a volume of rock 
in which flow parameters changed with time, represented by 
the path which is traced by the center of the FrMohr circle 
during progressive deformation. Each point on the path could 
also have been reached along one of the standard curves in 
Fig. 4 for invariable flow parameters. The W~-value of the 
standard curve which leads to the final point on the path is 
the mean vorticity number W~ for the total deformation. 

cle center in Mohr space can be rather complex (Fig. 
8) and knowledge of the final Ff is no longer sufficient 
to predict the shape of the path. In the case of shear 
zones, a change in Wn during flow history has direct 
consequences on the deformation history of the wall 
rock, although in a single-phase shear zone with a 
homogeneous fabric distribution, changes were prob- 
ably gradual and constrained by coupling between the 
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i 
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Fig. 9. Three paths of F~Mohr circle centers, representing 
different deformation paths all lead to the same final defor- 
mation state. Explanation in text. 

deforming zone and the wall rock. The complex de- 
formation path must therefore be optimally 
reconstructed if deformation in the wall rock is to be 
fully understood. Figure 8 shows how any position gra- 
dient tensor Ff on a complex deformation path at a 
specific stage of the deformation could also have been 
reached along a path with constant W=. This W, value 
differs for every Ff stage and constitutes the ,,mean,, 
value of W. up to that stage of deformation. A full 
reconstruction of the deformation path would require 
determination of Rf, 21V and the ,,mean,, W. at suc- 
cessive stages of the deformation. In most geological 
situations this proves impossible. At best, partial 
reconstruction of a complex deformation path can be 
carried out in two steps: (1) determination of the 
,,mean,, W, for the total deformation and construc- 
tion of the final FrMohr circle; (2) determination of 
first order deviations of the true deformation path from 
the ,,mean,< path which leads to the final G position 
(Fig. 8). For the first step Q is calculated from the 
,,mean,< value of W= during the deformation. Only 
the finite strain and the Ghosh methods can be direct- 
ly applied to find this ,,mean<< value, because they simp- 
ly add rotation increments during the deformation. The 
other methods probably reequilibrate during the defor- 
mation and approach the last values of Wn reached. 

First order deviations from a ,,standard,< deformation 
path as in Figure 4 can probably be established in many 
deformed materials once the ,,mean<< Wn has been 
established and Ff calculated for total deformation. 
Fabric elements formed during part of the deformation 
history, such as crack-seal veins or inclusion patterns 
in porphyroblasts can be used to determine ,,in- 
termediate,, points of the deformation path (Fig. 8) or 
results from different W, markers, those for mean 
and reequlibrated values, can be compared. In Figure 
9, three deformation paths have been plotted in Mohr 
space: (a) flow with Wn = 1.0 during the first half and 
0.4 during the second half of the deformation history 
(Fig. 9a); (b) flow with invariable Wo = 0.7 (Fig. 9b); 
(c) flow with W,1 = 0.4 during the first half of the 
flow history and W. = 1.0 during the second half 
(Fig. 9c). For the values of s and t used in the calcula- 
tion (0.1 and 10 for the entire deformation history), 
all three paths result in an identical finite position gradi- 
ent tensor, i.e. at the same point in Mohr space. This 
means that the finite rotation and stretches of material 
lines along the three paths are equal, but that the rota- 
tion and stretch histories of these lines are different. 
The three paths could be distinguished by the use of 
different markers of W~. The finite strain and Ghosh 
methods will give similar results (Wo = 0.7) for all 
three paths, while the blokked object method would 
ideally give values of W~ = 0.7, 1.0 and 0.4 as a result 
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of reequilibration to the last part of the deformation 
path. Combination of the finite strain or Ghosh 
methods and the blocked object method will show that 
for (a) W= was decreasing during the deformation, for 
(b) W= remained constant and for (c) Wn was increas- 
ing. This means that it should be possible in practice 
to determine whether the deformation path in Mohr 
space roughly coincided with a constant Wo history 
(b), or was situated in the domains above (a) or below 
(c) the constant Wn curve. 

Variable  s and a 

Besides variations in W., a variable mean stretching 
rate s and volume change rate a may be common in 
nature. The effects of their variability on the finite 
fabric are much less noticable, however. For progressive 
deformation with invariable Wn, changes in s result in 
periods of relatively fast or slow accumulation of 
deformation, i.e. in a change in velocity of the Mohr 
circle center in Mohr space without any deviations 
from the path for that particular Wn value as shown 
in Figure 4. Deformation paths as outlined above are 
not sensitive to absolute values of the mean stretching 
rate, or to changes therein during the deformation. 

Changes in volume change rate a along a deformation 
path with constant or variable Wn steepens or flattens 
the path of the Mohr circle center, but does not affect 
the ratio Q/R  (PAsscHI~R, in press). Such changes are 
therefore difficult to detect in the final fabric. For ac- 
curate flow analysis, proof should be found that ac- 
cumulation of volume change happened at a constant 
rate, or an attempt must be made to estimate variations 
in a from relics of early fabric elements. Possibly, data 
on mean stretching rate (e.g. from palaeopiezometers) 
or volume change rate (e.g. from crack-seal veins) for 
the last part of the deformation path can be compared 
with ,,mean<, values to obtain an estimate of their 
variability in the same way as described for W~ above. 

Conclus ions  

Analysis of the deformation path in naturally deform- 
ed rocks can theoretically be carried out on any volume 
of material which gives evidence of relatively 
homogeneous deformation on some scale of observa- 

tion. For a complete description of the deformation 
and a reconstruction of the deformation path it is 
necessary to incorporate data on the flow vorticity 
number; some methods to determine this number are 
suggested in this paper. In practice, a lot more research 
on the effects of flow vorticity number and volume 
change on microfabric development in rocks is need- 
ed before the method can be generally applied; this 
paper mainly serves to illustrate that fabric elements 
in naturally deformed rocks, and notably in shear 
zones, contain more information on the deformation 
path than is presently being used in structural geology. 
However, with the criteria given in this paper, some 
shear zone samples which contain a large number of 
fabric elements of different age can now be used in 
analysis of the deformation path (PASsCHIER & URAI, 
in prep.). Such work can be carried out along the 
following lines: 
(1) find the orientation of the vorticity vector from the 
orientation of shape fabric elements and asymmetric 
microstructures. Only if the vorticity vector coincides 
with one of the symmetry axes of the finite strain ellip- 
soid can an accurate analysis be carried out 
(2) construct the Mohr circle for the final position gradi- 
ent tensor Fp using: 

(a) values of stretch and rotation with respect to 
ISA of three material lines (PASSCHIER & URAI, 
prep.) or 
(b) values of finite strain, volume change and 
,,mean,, Wo 

(3) determine the variability of W~ and, if possible, of 
s and a 
(4) sketch the domains where the deformation path 
most probably traversed Mohr space towards the finite 
position 
(5) carry out controls by application of more than one 
method for each of the steps given above and by con- 
trol on the flow pattern in an adjacent, connected do- 
main, e.g. the wall rock in case of a shear zone. An 
analysis as outlined above can be placed in a wider con- 
text if the orientation of the kinematic frame of the 
flow, e.g. the ISA is known with respect to some ex- 
ternal marker. 
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